Tzu-Hsuan Hsu, Ming-Huang Li, A. Zope, Sheng-Shian Li
{"title":"A Sub-mW/Pixel Zero-Bias CMUT-in-CMOS Receiver Front-End with TiN Electrode","authors":"Tzu-Hsuan Hsu, Ming-Huang Li, A. Zope, Sheng-Shian Li","doi":"10.1109/IFCS-ISAF41089.2020.9234860","DOIUrl":null,"url":null,"abstract":"In this work, a sub-mW/pixel monolithic zero-bias CMOS-MEMS capacitive micromachined ultrasound transducer (CMUT) receiver front-end is demonstrated based on a titanium nitride composite (TiN-C) structure for low-voltage applications. The fabricated CMUT device exhibits a center frequency of 3 MHz immersed in water while having an operation bandwidth of roughly 90%. The front-end low noise amplifier of each CMUT pixel ($180\\times 550\\ \\mu \\mathrm{m}^{2}$) features gain of 25 dB and bandwidth of 14 MHz while only consuming 0.965 mW from a 2.5V supply, showing a great potential for high speed and low power imaging applications. The sensitivity of the proposed CMUT front-end was characterized with 0.4 mV/kPa and 1.4 mV/kPa with DC-bias of 0V (i.e., zero-bias) and 2V, respectively, which is benefitted from the efficient electrostatic transduction offered by TiN-C MEMS platform (transducer gap size < 400 nm) in $0.35\\ \\mu \\mathrm{m}$ CMOS.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"35 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a sub-mW/pixel monolithic zero-bias CMOS-MEMS capacitive micromachined ultrasound transducer (CMUT) receiver front-end is demonstrated based on a titanium nitride composite (TiN-C) structure for low-voltage applications. The fabricated CMUT device exhibits a center frequency of 3 MHz immersed in water while having an operation bandwidth of roughly 90%. The front-end low noise amplifier of each CMUT pixel ($180\times 550\ \mu \mathrm{m}^{2}$) features gain of 25 dB and bandwidth of 14 MHz while only consuming 0.965 mW from a 2.5V supply, showing a great potential for high speed and low power imaging applications. The sensitivity of the proposed CMUT front-end was characterized with 0.4 mV/kPa and 1.4 mV/kPa with DC-bias of 0V (i.e., zero-bias) and 2V, respectively, which is benefitted from the efficient electrostatic transduction offered by TiN-C MEMS platform (transducer gap size < 400 nm) in $0.35\ \mu \mathrm{m}$ CMOS.