Day-ahead price forecasting based on hybrid prediction model

J. Olamaee, Mohsen Mohammadi, A. Noruzi, S. Hosseini
{"title":"Day-ahead price forecasting based on hybrid prediction model","authors":"J. Olamaee, Mohsen Mohammadi, A. Noruzi, S. Hosseini","doi":"10.1002/cplx.21792","DOIUrl":null,"url":null,"abstract":"Short-Term Price Forecast is a key issue for operation of both regulated power systems and electricity markets. Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, nonstationary, and time variant behavior of electricity price time series. So, in this article, the forecast model includes wavelet transform, autoregressive integrated moving average, and radial basis function neural networks (RBFN) is presented. Also, an intelligent algorithm is applied to optimize the RBFN structure, which adapts it to the specified training set, reduce computational complexity and avoids over fitting. Effectiveness of the proposed method is applied for price forecasting of electricity market of mainland Spain and its results are compared with the results of several other price forecast methods. These comparisons confirm the validity of the developed approach. © 2016 Wiley Periodicals, Inc. Complexity, 2016","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"295 1","pages":"156-164"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cplx.21792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Short-Term Price Forecast is a key issue for operation of both regulated power systems and electricity markets. Energy price forecast is the key information for generating companies to prepare their bids in the electricity markets. However, this forecasting problem is complex due to nonlinear, nonstationary, and time variant behavior of electricity price time series. So, in this article, the forecast model includes wavelet transform, autoregressive integrated moving average, and radial basis function neural networks (RBFN) is presented. Also, an intelligent algorithm is applied to optimize the RBFN structure, which adapts it to the specified training set, reduce computational complexity and avoids over fitting. Effectiveness of the proposed method is applied for price forecasting of electricity market of mainland Spain and its results are compared with the results of several other price forecast methods. These comparisons confirm the validity of the developed approach. © 2016 Wiley Periodicals, Inc. Complexity, 2016
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合预测模型的日前价格预测
短期电价预测是调控电力系统和电力市场运行的关键问题。能源价格预测是发电企业准备在电力市场投标的关键信息。然而,由于电价时间序列的非线性、非平稳和时变行为,该预测问题比较复杂。为此,本文提出了基于小波变换、自回归积分移动平均和径向基函数神经网络(RBFN)的预测模型。采用智能算法对RBFN结构进行优化,使其适应于指定的训练集,降低了计算复杂度,避免了过拟合。将该方法的有效性应用于西班牙大陆电力市场的价格预测,并与其他几种价格预测方法的结果进行了比较。这些比较证实了所开发方法的有效性。©2016 Wiley期刊公司复杂性,2016
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Epigenetic Alterations in Post-Traumatic Stress Disorder: Comprehensive Review of Molecular Markers. Olfactory Epithelium Infection by SARS-CoV-2: Possible Neuroinflammatory Consequences of COVID-19. Oral Contraceptives and the Risk of Psychiatric Side Effects: A Review Internet-Based Trauma Recovery Intervention for Nurses: A Randomized Controlled Trial Erratum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1