The Effect of Surface Treatment/Polymer Type on Formation of 3D-Boron Nitride Foams

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2023-09-05 DOI:10.4028/p-rQJe0Q
A. Akpinar Borazan, D. Kuru, Sahra Dandil, C. Acıkgoz
{"title":"The Effect of Surface Treatment/Polymer Type on Formation of 3D-Boron Nitride Foams","authors":"A. Akpinar Borazan, D. Kuru, Sahra Dandil, C. Acıkgoz","doi":"10.4028/p-rQJe0Q","DOIUrl":null,"url":null,"abstract":"In this study, the use of boron nitride (BN) foam composites as adsorbents in wastewater treatment using polyvinyl alcohol (PVA), polyvinyl butyral (PVB) and polyester (PE) polymers has been investigated. BN powder has been functionalized by Hummer’s and sodium hydroxide (NaOH) methods to facilitate BN binding with the polymer. Fourier Transform Infrared (FT-IR) results show that hydroxyl (-OH) groups are effectively bounded to the BN structure. Scanning Electron Microscope (SEM) observation demonstrated the 3D interconnected porous structure of the obtained BN foams using different polymers. It is observed that BN and polymer interaction is better in foams formed with PVA and PVB compared to PE polymers. PVA and PVB structure shows a bridge property to link the layers so that a porous network structure is formed. It has been determined that the foam composite modified with Hummer’s method and using PVB as a polymer (h-BN-PVB-H) reaches an adsorption capacity of 8.843 mg/g in 44 hours and provides approximately 18% Crystal Violet (CV) dye removal. h-BN-PVB-H foam composite removes approximately 26% of Reactive Blue 49 (RB 49) dye with an adsorption capacity of 12.313 mg/g in the first 10 minutes. The 3D BN/Polymer foams showed reasonable absorption capacities for olive oil, cyclohexane and toluene from 200-980 wt% relative to the foam’s dry weight. It shows that the produced composite foams can absorb approximately 2-10 times their own weight.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"137 1","pages":"37 - 48"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-rQJe0Q","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the use of boron nitride (BN) foam composites as adsorbents in wastewater treatment using polyvinyl alcohol (PVA), polyvinyl butyral (PVB) and polyester (PE) polymers has been investigated. BN powder has been functionalized by Hummer’s and sodium hydroxide (NaOH) methods to facilitate BN binding with the polymer. Fourier Transform Infrared (FT-IR) results show that hydroxyl (-OH) groups are effectively bounded to the BN structure. Scanning Electron Microscope (SEM) observation demonstrated the 3D interconnected porous structure of the obtained BN foams using different polymers. It is observed that BN and polymer interaction is better in foams formed with PVA and PVB compared to PE polymers. PVA and PVB structure shows a bridge property to link the layers so that a porous network structure is formed. It has been determined that the foam composite modified with Hummer’s method and using PVB as a polymer (h-BN-PVB-H) reaches an adsorption capacity of 8.843 mg/g in 44 hours and provides approximately 18% Crystal Violet (CV) dye removal. h-BN-PVB-H foam composite removes approximately 26% of Reactive Blue 49 (RB 49) dye with an adsorption capacity of 12.313 mg/g in the first 10 minutes. The 3D BN/Polymer foams showed reasonable absorption capacities for olive oil, cyclohexane and toluene from 200-980 wt% relative to the foam’s dry weight. It shows that the produced composite foams can absorb approximately 2-10 times their own weight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面处理/聚合物类型对三维氮化硼泡沫形成的影响
研究了氮化硼(BN)泡沫复合材料在聚乙烯醇(PVA)、聚乙烯醇丁醛(PVB)和聚酯(PE)聚合物废水处理中的吸附作用。采用Hummer法和氢氧化钠(NaOH)法对氮化硼粉体进行功能化处理,以促进氮化硼与聚合物的结合。傅里叶变换红外(FT-IR)结果表明,羟基(-OH)基团与BN结构有效结合。扫描电镜(SEM)观察了不同聚合物制备的BN泡沫的三维互联多孔结构。与PE聚合物相比,PVA和PVB形成的泡沫中BN与聚合物的相互作用更好。PVA和PVB结构表现出桥接性质,连接各层,从而形成多孔网络结构。经测定,以PVB为聚合物,采用Hummer方法改性的泡沫复合材料(h-BN-PVB-H)在44小时内的吸附量为8.843 mg/g,可脱除约18%的结晶紫(CV)染料。h-BN-PVB-H泡沫复合材料在前10分钟内去除活性蓝49 (RB 49)染料约26%,吸附量为12.313 mg/g。三维BN/聚合物泡沫对橄榄油、环己烷和甲苯的吸附能力相对于泡沫的干重在200-980 wt%之间。结果表明,所制备的复合泡沫材料的吸收率约为其自重的2-10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Mean Field Study of a Cylindrical Ferrimagnetic Nanotube with Different Anisotropies The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method Fabrication and Characterization of Eco-Friendly Polystyrene Based Zinc Oxide-Graphite (PS/ZnO-G) Hierarchical CoP@NiMn-P Nanocomposites Grown on Carbon Cloth for High-Performance Supercapacitor Electrodes High-Transconductance and Low-Leakage Current Single Aluminum Nitride Nanowire Field Effect Transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1