Système de télésurveillance sonore pour la détection de situations de détresse

D. Istrate , M. Vacher , J.F. Serignat , L. Besacier , E. Castelli
{"title":"Système de télésurveillance sonore pour la détection de situations de détresse","authors":"D. Istrate ,&nbsp;M. Vacher ,&nbsp;J.F. Serignat ,&nbsp;L. Besacier ,&nbsp;E. Castelli","doi":"10.1016/j.rbmret.2005.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The telemedicine and medical remote monitoring in particular, today represents an effective solution to the health professional shortcomings facing to the increasing older population. In addition to the comfort of being at home, this system decreases the cost of long hospitalization. The proposed system achieves the home medical telesurveillance by means of microphones and medical sensors to detect a distress situation. This system is designed for elderly people at home or for the patient with chronic illness. The experimental apartment is equipped with medical sensors (tensiometer, oxymeter, balance, etc.), infrared position sensors, and acoustic sensors (1 microphone/room). The originality of the system comes from the replacement of the video surveillance with a sound surveillance. The sound analysis system is divided in two stages: firstly, the detection/extraction of the sounds is operated and secondly, a classification of these sounds in known classes takes place. A wavelet-based algorithm with good performance when applied in noisy environments is proposed. The acoustical classification step uses a Gaussian Mixture Models to classify the sounds according to the 7 predefined classes. The detection algorithm allows an equal error rate of 0% for the signal to noise ratio superior or equal to 10 dB and 4% for the 0 dB. The proposed system coupled with a classical medical telesurveillance system will bring extra information needed for the reliability of the global system.</p></div>","PeriodicalId":100733,"journal":{"name":"ITBM-RBM","volume":"27 2","pages":"Pages 35-45"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rbmret.2005.11.001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITBM-RBM","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1297956206000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The telemedicine and medical remote monitoring in particular, today represents an effective solution to the health professional shortcomings facing to the increasing older population. In addition to the comfort of being at home, this system decreases the cost of long hospitalization. The proposed system achieves the home medical telesurveillance by means of microphones and medical sensors to detect a distress situation. This system is designed for elderly people at home or for the patient with chronic illness. The experimental apartment is equipped with medical sensors (tensiometer, oxymeter, balance, etc.), infrared position sensors, and acoustic sensors (1 microphone/room). The originality of the system comes from the replacement of the video surveillance with a sound surveillance. The sound analysis system is divided in two stages: firstly, the detection/extraction of the sounds is operated and secondly, a classification of these sounds in known classes takes place. A wavelet-based algorithm with good performance when applied in noisy environments is proposed. The acoustical classification step uses a Gaussian Mixture Models to classify the sounds according to the 7 predefined classes. The detection algorithm allows an equal error rate of 0% for the signal to noise ratio superior or equal to 10 dB and 4% for the 0 dB. The proposed system coupled with a classical medical telesurveillance system will bring extra information needed for the reliability of the global system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探测遇险情况的声音远程监控系统
今天,远程医疗和医疗远程监测是解决日益增长的老年人口所面临的保健专业人员不足的有效办法。除了在家的舒适外,该系统还减少了长期住院治疗的费用。该系统通过麦克风和医疗传感器实现家庭医疗远程监控,检测遇险情况。本系统专为居家老人或慢性病患者设计。实验公寓配有医用传感器(张力计、氧计、天平等)、红外位置传感器、声学传感器(麦克风1个/室)。该系统的独创性来自于用声音监控代替视频监控。声音分析系统分为两个阶段:首先,操作声音的检测/提取,其次,将这些声音分类为已知的类别。提出了一种在噪声环境下具有良好性能的小波算法。声学分类步骤使用高斯混合模型根据7个预定义的类别对声音进行分类。该检测算法允许在信噪比优于或等于10db的情况下错误率为0%,在0 dB的情况下错误率为4%。该系统与传统的医疗远程监控系统相结合,将带来全球系统可靠性所需的额外信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oxygéenateurs : évolution et nouveautés Oxygenators : evolution and update Sortie de CEC difficile : tableaux cliniques et modalités thérapeutiques Phase contact dans la réponse hémostatique et vasculaire vers un système intégré Place de l'aprotinine en chirurgie cardiaque Déficit acquis en Antithrombine et hemofiltration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1