Trong Vu, T. Bao, Q. Hoang, Carsten Drebenstetd, Pham Van Hoa, Hoang Hung Thang
{"title":"Measuring blast fragmentation at Nui Phao open-pit mine, Vietnam using the Mask R-CNN deep learning model","authors":"Trong Vu, T. Bao, Q. Hoang, Carsten Drebenstetd, Pham Van Hoa, Hoang Hung Thang","doi":"10.1080/25726668.2021.1944458","DOIUrl":null,"url":null,"abstract":"ABSTRACT Blast fragmentation size distribution is one of the most critical factors in evaluating the blasting results and affecting the downstream mining and processing operations in open-pit mines. Image-based methods are widely applied to address the problem but require heavy user interaction and experience. This study deployed a deep learning model Mask R-CNN to develop an automatic measurement method of blast fragmentation. The model was trained using images captured from real blasting sites in Nui Phao open-pit mine in Vietnam. The trained model reported high average precision scores (Intersection over Union, IoU = 0.5) 92% and 83% for bounding box and segmentation masks, respectively. The results lay a solid technical basis for the automated measurement of blast fragmentation in open-pit mines.","PeriodicalId":44166,"journal":{"name":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","volume":"4 1","pages":"232 - 243"},"PeriodicalIF":1.8000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726668.2021.1944458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 11
Abstract
ABSTRACT Blast fragmentation size distribution is one of the most critical factors in evaluating the blasting results and affecting the downstream mining and processing operations in open-pit mines. Image-based methods are widely applied to address the problem but require heavy user interaction and experience. This study deployed a deep learning model Mask R-CNN to develop an automatic measurement method of blast fragmentation. The model was trained using images captured from real blasting sites in Nui Phao open-pit mine in Vietnam. The trained model reported high average precision scores (Intersection over Union, IoU = 0.5) 92% and 83% for bounding box and segmentation masks, respectively. The results lay a solid technical basis for the automated measurement of blast fragmentation in open-pit mines.