Distributed online extraction of a fluid model for microservice applications using local tracing data

Q1 Computer Science IEEE Cloud Computing Pub Date : 2022-07-01 DOI:10.1109/CLOUD55607.2022.00037
Johan Ruuskanen, A. Cervin
{"title":"Distributed online extraction of a fluid model for microservice applications using local tracing data","authors":"Johan Ruuskanen, A. Cervin","doi":"10.1109/CLOUD55607.2022.00037","DOIUrl":null,"url":null,"abstract":"Dynamic resource management is a difficult problem in modern microservice applications. Many proposed methods rely on the availability of an analytical performance model, often based on queueing theory. Such models can always be hand-crafted, but this takes time and requires expert knowledge. Various methods have been proposed that can automatically extract models from logs or tracing data. However, they are often intricate, requiring off-line stages and advanced algorithms for retrieving the service-time distributions. Furthermore, the resulting models can be complex and unsuitable for online evaluation. Aiming for simplicity, we in this paper introduce a general queuing network model for microservice applications that can be (i) quickly and accurately solved using a refined mean-field fluid model and (ii) completely extracted at runtime in a distributed fashion from common local tracing data at each service. The fit of the model and the prediction accuracies under system perturbations are evaluated in a cloud-based microservice application and are found to be accurate.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"81 1","pages":"179-190"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Dynamic resource management is a difficult problem in modern microservice applications. Many proposed methods rely on the availability of an analytical performance model, often based on queueing theory. Such models can always be hand-crafted, but this takes time and requires expert knowledge. Various methods have been proposed that can automatically extract models from logs or tracing data. However, they are often intricate, requiring off-line stages and advanced algorithms for retrieving the service-time distributions. Furthermore, the resulting models can be complex and unsuitable for online evaluation. Aiming for simplicity, we in this paper introduce a general queuing network model for microservice applications that can be (i) quickly and accurately solved using a refined mean-field fluid model and (ii) completely extracted at runtime in a distributed fashion from common local tracing data at each service. The fit of the model and the prediction accuracies under system perturbations are evaluated in a cloud-based microservice application and are found to be accurate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用本地跟踪数据为微服务应用程序分布式在线提取流体模型
动态资源管理是现代微服务应用中的一个难题。许多提出的方法依赖于分析性能模型的可用性,通常基于排队理论。这样的模型总是可以手工制作的,但这需要时间和专业知识。人们提出了各种从日志或跟踪数据中自动提取模型的方法。然而,它们通常很复杂,需要离线阶段和高级算法来检索服务时间分布。此外,所得到的模型可能很复杂,不适合在线评估。为了简单起见,我们在本文中为微服务应用程序引入了一个通用的排队网络模型,该模型可以(i)使用精炼的平均场流体模型快速准确地求解,(ii)在运行时以分布式方式从每个服务的公共本地跟踪数据中完全提取。在基于云的微服务应用中,对模型的拟合和系统扰动下的预测精度进行了评估,发现模型是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1