Long Ni, Jinyi Tian, T. Song, Yongson Jong, Jianing Zhao
{"title":"Optimizing Geometric Parameters in Hydrocyclones for Enhanced Separations: A Review and Perspective","authors":"Long Ni, Jinyi Tian, T. Song, Yongson Jong, Jianing Zhao","doi":"10.1080/15422119.2017.1421558","DOIUrl":null,"url":null,"abstract":"Hydrocyclones have been extensively applied for solid–liquid or liquid–liquid separations in various industries. However, the exact mechanisms underlying the enhanced separation technologies based on the optimization of geometric parameters of hydrocyclones remain unclear, and a number of research teams have performed numerous studies to enlarge the application scope of hydrocyclones by optimizing geometric parameters. This review provides a comprehensive state-of-the-art review of hydrocyclone enhanced-separation technologies. The enhanced-separation technologies are categorized into ten groups: cylindrical section, inlet, vortex finder, underflow pipe, conical section, hydrocyclone inclination angle, hydrocyclone insertion, conical-section/apex water injection, reflux device, and multi-hydrocyclone arrangement. These enhanced-separation technologies were analyzed and summarized according to the key separation-performance parameters of hydrocyclones, such as separation efficiency, cut size, split ratio, energy consumption, and capacity. It is expected that both the reviewed contents and the proposed challenges and future methodologies and technologies may provide research fellows working in this field with an improved understanding of enhanced separation technologies of hydrocyclones.","PeriodicalId":21744,"journal":{"name":"Separation & Purification Reviews","volume":"3 1","pages":"30 - 51"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation & Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2017.1421558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
Abstract
Hydrocyclones have been extensively applied for solid–liquid or liquid–liquid separations in various industries. However, the exact mechanisms underlying the enhanced separation technologies based on the optimization of geometric parameters of hydrocyclones remain unclear, and a number of research teams have performed numerous studies to enlarge the application scope of hydrocyclones by optimizing geometric parameters. This review provides a comprehensive state-of-the-art review of hydrocyclone enhanced-separation technologies. The enhanced-separation technologies are categorized into ten groups: cylindrical section, inlet, vortex finder, underflow pipe, conical section, hydrocyclone inclination angle, hydrocyclone insertion, conical-section/apex water injection, reflux device, and multi-hydrocyclone arrangement. These enhanced-separation technologies were analyzed and summarized according to the key separation-performance parameters of hydrocyclones, such as separation efficiency, cut size, split ratio, energy consumption, and capacity. It is expected that both the reviewed contents and the proposed challenges and future methodologies and technologies may provide research fellows working in this field with an improved understanding of enhanced separation technologies of hydrocyclones.