{"title":"Optimal Multi-Way Number Partitioning","authors":"Ethan L. Schreiber","doi":"10.1145/3184400","DOIUrl":null,"url":null,"abstract":"The NP-hard number-partitioning problem is to separate a multiset S of n positive integers into k subsets such that the largest sum of the integers assigned to any subset is minimized. The classic application is scheduling a set of n jobs with different runtimes on k identical machines such that the makespan, the elapsed time to complete the schedule, is minimized. The two-way number-partitioning decision problem is one of the original 21 problems that Richard Karp proved NP-complete. It is also one of Garey and Johnson’s six fundamental NP-complete problems and the only one based on numbers. This article explores algorithms for solving multi-way number-partitioning problems optimally. We explore previous algorithms as well as our own algorithms, which fall into three categories: sequential number partitioning (SNP), a branch-and-bound algorithm; binary-search improved bin completion (BSIBC), a bin-packing algorithm; and cached iterative weakening (CIW), an iterative weakening algorithm. We show experimentally that, for large random numbers, SNP and CIW are state-of-the-art algorithms depending on the values of n and k. Both algorithms outperform the previous state of the art by up to seven orders of magnitude in terms of runtime.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"90 1","pages":"1 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
The NP-hard number-partitioning problem is to separate a multiset S of n positive integers into k subsets such that the largest sum of the integers assigned to any subset is minimized. The classic application is scheduling a set of n jobs with different runtimes on k identical machines such that the makespan, the elapsed time to complete the schedule, is minimized. The two-way number-partitioning decision problem is one of the original 21 problems that Richard Karp proved NP-complete. It is also one of Garey and Johnson’s six fundamental NP-complete problems and the only one based on numbers. This article explores algorithms for solving multi-way number-partitioning problems optimally. We explore previous algorithms as well as our own algorithms, which fall into three categories: sequential number partitioning (SNP), a branch-and-bound algorithm; binary-search improved bin completion (BSIBC), a bin-packing algorithm; and cached iterative weakening (CIW), an iterative weakening algorithm. We show experimentally that, for large random numbers, SNP and CIW are state-of-the-art algorithms depending on the values of n and k. Both algorithms outperform the previous state of the art by up to seven orders of magnitude in terms of runtime.