{"title":"A Unified Analogy-Based Computation Methodology From Elasticity to Electromagnetic-Chemical-Thermal Fields and a Concept of Multifield Sensing","authors":"Xin Zhang, Q. Wang","doi":"10.1115/1.4053910","DOIUrl":null,"url":null,"abstract":"\n This paper reports a unified analogy-based computation methodology, together with a concept of multifield, multifunctional sensing, from elasticity to electromagnetic-chemical-thermal fields, via utilizing the similarities of mechanical-electromagnetic-chemical-thermal (MEMCT) field variables, governing equations, and the material properties pertaining to each individual field. Two equivalences are systemized, which are the field-formulation equivalence and surface-value equivalence. Due to similarity, a number of thermal, electromagnetic, or chemical solutions can be obtained from the direct degeneration of existing mechanical solutions by making specified equivalences of 2G↔k0↔ϖ0↔μ0↔β0 with G for shear modulus, k0 for heat conductivity, ϖ0 for dielectric permittivity, μ0 for magnetic permeability, and β0 for chemical diffusivity, as well as by setting Poisson’s ratio ν → 0.5. These specified equivalences enable quick solutions to other fields directly from mechanics formulations, such as those in the forms of the Galerkin vectors and Papkovich-Neuber potentials, and field coupling, by means of analogy. Several examples are given, one is used to demonstrate that the field solutions of a layered half-space with imperfect thermal, electromagnetic, or chemical interfaces can be readily obtained from the elastic solutions involving interfacial imperfections via the obtained formulation equivalence. A set of simple equations are derived to relate surface behaviors of different fields via the obtained surface-value equivalence, on which a concept of multifield sensing is proposed.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports a unified analogy-based computation methodology, together with a concept of multifield, multifunctional sensing, from elasticity to electromagnetic-chemical-thermal fields, via utilizing the similarities of mechanical-electromagnetic-chemical-thermal (MEMCT) field variables, governing equations, and the material properties pertaining to each individual field. Two equivalences are systemized, which are the field-formulation equivalence and surface-value equivalence. Due to similarity, a number of thermal, electromagnetic, or chemical solutions can be obtained from the direct degeneration of existing mechanical solutions by making specified equivalences of 2G↔k0↔ϖ0↔μ0↔β0 with G for shear modulus, k0 for heat conductivity, ϖ0 for dielectric permittivity, μ0 for magnetic permeability, and β0 for chemical diffusivity, as well as by setting Poisson’s ratio ν → 0.5. These specified equivalences enable quick solutions to other fields directly from mechanics formulations, such as those in the forms of the Galerkin vectors and Papkovich-Neuber potentials, and field coupling, by means of analogy. Several examples are given, one is used to demonstrate that the field solutions of a layered half-space with imperfect thermal, electromagnetic, or chemical interfaces can be readily obtained from the elastic solutions involving interfacial imperfections via the obtained formulation equivalence. A set of simple equations are derived to relate surface behaviors of different fields via the obtained surface-value equivalence, on which a concept of multifield sensing is proposed.