Effect of Multi-SVC Installation for Loss Control in Power System using Multi-Computational Techniques

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.01405103
N. Balasubramaniam, N. A. M. Kamari, I. Musirin, A. A. Ibrahim
{"title":"Effect of Multi-SVC Installation for Loss Control in Power System using Multi-Computational Techniques","authors":"N. Balasubramaniam, N. A. M. Kamari, I. Musirin, A. A. Ibrahim","doi":"10.14569/ijacsa.2023.01405103","DOIUrl":null,"url":null,"abstract":"— Flexible AC Transmission Systems (FACTs) play a vital role in minimizing the power losses and improving voltage profile in power transmission system. These increase the real power transfer capacity of the system. However, optimal location of sizing of the FACTs devices determines the extent of benefits provided by the FACTs devices to the transmission system. Non-optimal solution in terms of the location and sizing may possibly lead to under-compensation or over-compensation phenomena. Thus, a robust optimization is a priori for optimal solution achievement. This paper presents a study on the effect on multi static VAR compensators (SVC) installation for loss control in power system using evolutionary programming (EP), artificial immune system (AIS) and immune evolutionary programming (IEP). The objective is to minimize the real power loss transmission and improve the voltage profile of the transmission power system. The study reveals that installation of multi-units SVC significantly reduces the power loss and increases the voltage profile of the system, validated on the IEEE 30-Bus Reliability Test System (RTS).","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.01405103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

— Flexible AC Transmission Systems (FACTs) play a vital role in minimizing the power losses and improving voltage profile in power transmission system. These increase the real power transfer capacity of the system. However, optimal location of sizing of the FACTs devices determines the extent of benefits provided by the FACTs devices to the transmission system. Non-optimal solution in terms of the location and sizing may possibly lead to under-compensation or over-compensation phenomena. Thus, a robust optimization is a priori for optimal solution achievement. This paper presents a study on the effect on multi static VAR compensators (SVC) installation for loss control in power system using evolutionary programming (EP), artificial immune system (AIS) and immune evolutionary programming (IEP). The objective is to minimize the real power loss transmission and improve the voltage profile of the transmission power system. The study reveals that installation of multi-units SVC significantly reduces the power loss and increases the voltage profile of the system, validated on the IEEE 30-Bus Reliability Test System (RTS).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多svc安装对多计算技术下电力系统损耗控制的影响
柔性交流输电系统(FACTs)在降低输电系统的功率损耗和改善输电系统的电压分布方面起着至关重要的作用。这些增加了系统的实际电力传输能力。然而,FACTs设备尺寸的最佳位置决定了FACTs设备为传输系统提供的好处程度。在位置和尺寸方面的非最优解可能导致补偿不足或补偿过度的现象。因此,鲁棒优化是实现最优解的先验条件。本文采用进化规划(EP)、人工免疫系统(AIS)和免疫进化规划(IEP)研究了多静态无功补偿器(SVC)的安装对电力系统的损失控制的影响。其目标是最大限度地减少实际输电损耗,改善输电系统的电压分布。研究表明,多单元SVC的安装显著降低了系统的功率损耗,增加了系统的电压分布,并在IEEE 30总线可靠性测试系统(RTS)上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1