Xinze Li , Bangyu Wu , Guofeng Liu , Xu Zhu , Linfei Wang
{"title":"Microleveling aerogeophysical data using deep convolutional network and MoG-RPCA","authors":"Xinze Li , Bangyu Wu , Guofeng Liu , Xu Zhu , Linfei Wang","doi":"10.1016/j.aiig.2021.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Residual magnetic error remains after standard levelling process. The weak non-geological effect, manifesting itself as streaky noise along flight lines, creates a challenge for airborne geophysical data processing and interpretation. Microleveling is the process to eliminate this residual noise and is now a standard areogeophysical data processing step. In this paper, we propose a two-step procedure for single aerogeophysical data microleveling: a deep convolutional network is first adopted as approximator to map the original data into a low-level part with nature geological structures and a corrugated residual which still contains high-level detail geological structures; second, the mixture of Gaussian robust principal component analysis (MoG-RPCA) is then used to separate the weak energy fine structures from the residual. The final microleveling result is the addition of low-level structures from deep convolutional network and fine structures from MoG-RPCA. The deep convolutional network does not need dataset for training and the handcrafted network serves as prior (deep image prior) to capture the low-level nature geological structures in the areogeophysical data. Experiments on synthetic data and field data demonstrate that the combination of deep convolutional network and MoG-RPCA is an effective framework for single areogeophysical data microleveling.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"2 ","pages":"Pages 20-25"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiig.2021.08.003","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544121000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Residual magnetic error remains after standard levelling process. The weak non-geological effect, manifesting itself as streaky noise along flight lines, creates a challenge for airborne geophysical data processing and interpretation. Microleveling is the process to eliminate this residual noise and is now a standard areogeophysical data processing step. In this paper, we propose a two-step procedure for single aerogeophysical data microleveling: a deep convolutional network is first adopted as approximator to map the original data into a low-level part with nature geological structures and a corrugated residual which still contains high-level detail geological structures; second, the mixture of Gaussian robust principal component analysis (MoG-RPCA) is then used to separate the weak energy fine structures from the residual. The final microleveling result is the addition of low-level structures from deep convolutional network and fine structures from MoG-RPCA. The deep convolutional network does not need dataset for training and the handcrafted network serves as prior (deep image prior) to capture the low-level nature geological structures in the areogeophysical data. Experiments on synthetic data and field data demonstrate that the combination of deep convolutional network and MoG-RPCA is an effective framework for single areogeophysical data microleveling.