{"title":"Dynamical algorithms for data mining and machine learning over dynamic graphs","authors":"Mostafa Haghir Chehreghani","doi":"10.1002/widm.1393","DOIUrl":null,"url":null,"abstract":"In many modern applications, the generated data is a dynamic network. These networks are graphs that change over time by a sequence of update operations (node addition, node deletion, edge addition, edge deletion, and edge weight change). In such networks, it is inefficient to compute from scratch the solution of a data mining/machine learning task, after any update operation. Therefore in recent years, several so‐called dynamical algorithms have been proposed that update the solution, instead of computing it from scratch. In this paper, first we formulate this emerging setting and discuss its high‐level algorithmic aspects. Then, we review state of the art dynamical algorithms proposed for several data mining and machine learning tasks, including frequent pattern discovery, betweenness/closeness/PageRank centralities, clustering, classification, and regression.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"20 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1393","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In many modern applications, the generated data is a dynamic network. These networks are graphs that change over time by a sequence of update operations (node addition, node deletion, edge addition, edge deletion, and edge weight change). In such networks, it is inefficient to compute from scratch the solution of a data mining/machine learning task, after any update operation. Therefore in recent years, several so‐called dynamical algorithms have been proposed that update the solution, instead of computing it from scratch. In this paper, first we formulate this emerging setting and discuss its high‐level algorithmic aspects. Then, we review state of the art dynamical algorithms proposed for several data mining and machine learning tasks, including frequent pattern discovery, betweenness/closeness/PageRank centralities, clustering, classification, and regression.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.