Framework Design for the Retrieval of Instant Messaging in Social Media as Electronic Evidence

Linda Rosselina, Y. Suryanto, T. Hermawan, Fahdiaz Alief
{"title":"Framework Design for the Retrieval of Instant Messaging in Social Media as Electronic Evidence","authors":"Linda Rosselina, Y. Suryanto, T. Hermawan, Fahdiaz Alief","doi":"10.23919/EECSI50503.2020.9251888","DOIUrl":null,"url":null,"abstract":"The rapid growth of social media features not only brings many advantages but also causes problems. Mainly related to digital evidence when cybercrime occurs. One of the social media features that are currently popular is the unsend message feature in instant messaging applications such as Instagram, Whatsapp, Facebook Messenger, Skype, Viber, and Telegram. In cybercrime, the perpetrator can delete the messages and erase digital evidence, making it difficult to trace. Those artifact messages might be useful for law enforcement or forensic investigators to be used as digital evidence in court. Therefore, an effective and efficient framework is needed to guarantee the data integrity in the mobile forensic investigation process. This paper will discuss the review of several international standards on mobile forensics, namely NIST SP 800–101, ISO/IEC, and SWGDE. This paper also proposes a framework design to retrieve unsend data artifacts on social media according to official and widely used international mobile forensic standards.","PeriodicalId":6743,"journal":{"name":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","volume":"155 1","pages":"209-215"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EECSI50503.2020.9251888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of social media features not only brings many advantages but also causes problems. Mainly related to digital evidence when cybercrime occurs. One of the social media features that are currently popular is the unsend message feature in instant messaging applications such as Instagram, Whatsapp, Facebook Messenger, Skype, Viber, and Telegram. In cybercrime, the perpetrator can delete the messages and erase digital evidence, making it difficult to trace. Those artifact messages might be useful for law enforcement or forensic investigators to be used as digital evidence in court. Therefore, an effective and efficient framework is needed to guarantee the data integrity in the mobile forensic investigation process. This paper will discuss the review of several international standards on mobile forensics, namely NIST SP 800–101, ISO/IEC, and SWGDE. This paper also proposes a framework design to retrieve unsend data artifacts on social media according to official and widely used international mobile forensic standards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体中即时信息作为电子证据的检索框架设计
社交媒体功能的快速发展在带来诸多优势的同时也带来了诸多问题。主要涉及网络犯罪发生时的数字证据。目前流行的社交媒体功能之一是即时通讯应用程序(如Instagram、Whatsapp、Facebook Messenger、Skype、Viber和Telegram)中的取消发送消息功能。在网络犯罪中,犯罪者可以删除信息并清除数字证据,使其难以追踪。这些人工信息可能对执法人员或法医调查人员有用,可以在法庭上用作数字证据。因此,需要一个有效、高效的框架来保证移动取证过程中的数据完整性。本文将讨论对移动取证的几个国际标准的审查,即NIST SP 800-101, ISO/IEC和SWGDE。根据官方和广泛使用的国际移动取证标准,本文还提出了一个框架设计来检索社交媒体上未发送的数据工件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aquatic Iguana: A Floating Waste Collecting Robot with IoT Based Water Monitoring System Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm A Wireless ECG Device with Mobile Applications for Android Features Extraction on IoT Intrusion Detection System Using Principal Components Analysis (PCA) Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1