{"title":"Will high-entropy carbides and borides be enabling materials for extreme environments?","authors":"Fei Wang, F. Monteverde, B. Cui","doi":"10.1088/2631-7990/acbd6e","DOIUrl":null,"url":null,"abstract":"The concept of multi-principal component has created promising opportunities for the development of novel high-entropy ceramics for extreme environments encountered in advanced turbine engines, nuclear reactors, and hypersonic vehicles, as it expands the compositional space of ceramic materials with tailored properties within a single-phase solid solution. The unique physical properties of some high-entropy carbides and borides, such as higher hardness, high-temperature strength, lower thermal conductivity, and improved irradiation resistance than the constitute ceramics, have been observed. These promising properties may be attributed to the compositional complexity, atomic-level disorder, lattice distortion, and other fundamental processes related to defect formation and phonon scattering. This manuscript serves as a critical review of the recent progress in high-entropy carbides and borides, focusing on synthesis and evaluations of their performance in extreme high-temperature, irradiation, and gaseous environments.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"32 2 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acbd6e","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2
Abstract
The concept of multi-principal component has created promising opportunities for the development of novel high-entropy ceramics for extreme environments encountered in advanced turbine engines, nuclear reactors, and hypersonic vehicles, as it expands the compositional space of ceramic materials with tailored properties within a single-phase solid solution. The unique physical properties of some high-entropy carbides and borides, such as higher hardness, high-temperature strength, lower thermal conductivity, and improved irradiation resistance than the constitute ceramics, have been observed. These promising properties may be attributed to the compositional complexity, atomic-level disorder, lattice distortion, and other fundamental processes related to defect formation and phonon scattering. This manuscript serves as a critical review of the recent progress in high-entropy carbides and borides, focusing on synthesis and evaluations of their performance in extreme high-temperature, irradiation, and gaseous environments.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.