A mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials

M. Bideli, J. Gittins, H. Pezeshk
{"title":"A mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials","authors":"M. Bideli, J. Gittins, H. Pezeshk","doi":"10.22059/PBS.2016.59001","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recognizes the existence ofthree decision makers, namely: the company conducting the trial, whichdecides on its size; the regulator, whose approval is necessary for the drugto be licensed for sale; and the public at large, who determine ultimateusage. Moreover, we model the subsequent usage by plausible assumptionsfor actual behaviour. A Monte Carlo Markov Chain is applied to nd themaximum expected utility of conducting the trial.Sample size determination problem is an important task in the planning oftrials. The problem may be formulated formally in statistical terms. Themost frequently used methods are based on the required size, and power of thetrial for a specifed treatment efect Several authors haverecognized the value of using prior distributions rather than point estimatesin sample size calculations.","PeriodicalId":20726,"journal":{"name":"Progress in Biological Sciences","volume":"93 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/PBS.2016.59001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recognizes the existence ofthree decision makers, namely: the company conducting the trial, whichdecides on its size; the regulator, whose approval is necessary for the drugto be licensed for sale; and the public at large, who determine ultimateusage. Moreover, we model the subsequent usage by plausible assumptionsfor actual behaviour. A Monte Carlo Markov Chain is applied to nd themaximum expected utility of conducting the trial.Sample size determination problem is an important task in the planning oftrials. The problem may be formulated formally in statistical terms. Themost frequently used methods are based on the required size, and power of thetrial for a specifed treatment efect Several authors haverecognized the value of using prior distributions rather than point estimatesin sample size calculations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床试验样本量确定问题的贝叶斯/频率混合方法
本文介绍了一种基于混合贝叶斯/频率的随机优化方法来解决临床试验中样本量的确定问题。假设数据来自均值和方差都未知的正态分布。与通常的贝叶斯决策理论方法(假设只有一个决策者)相反,我们的方法认识到存在三个决策者,即:进行试验的公司,决定其规模;药品销售许可必须经其批准的监管机构;以及决定最终用途的广大公众。此外,我们通过对实际行为的合理假设对后续使用进行建模。应用蒙特卡洛马尔可夫链来确定进行试验的最大期望效用。样本量确定问题是试验计划中的一个重要问题。这个问题可以用统计术语正式表述。最常用的方法是根据所需的大小和特定治疗效果的试验能力。一些作者已经认识到在样本量计算中使用先验分布而不是点估计的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the enzymatic activity of halotolerant fungi isolated from Tehran's forest parks Transected sciatic nerve repair using poly L-lactic-co-glycolic acid nanofiber scaffolds with nerve growth factor in rat Physico-chemical and biological properties of electrospun poly-L-lactic acid/hydroxyapatite nano-composite scaffold for bone regeneration Agricultural wastes: Prospective Entomocides in Management of Cowpea Bruchids Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae] Interspecies interactions of halophilic and halotlerant actinomycetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1