Functional linear model with partially observed covariate and missing values in the response

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Nonparametric Statistics Pub Date : 2022-11-11 DOI:10.1080/10485252.2022.2142222
Christophe Crambes, Chayma Daayeb, A. Gannoun, Yousri Henchiri
{"title":"Functional linear model with partially observed covariate and missing values in the response","authors":"Christophe Crambes, Chayma Daayeb, A. Gannoun, Yousri Henchiri","doi":"10.1080/10485252.2022.2142222","DOIUrl":null,"url":null,"abstract":"Dealing with missing values is an important issue in data observation or data recording process. In this paper, we consider a functional linear regression model with partially observed covariate and missing values in the response. We use a reconstruction operator that aims at recovering the missing parts of the explanatory curves, then we are interested in regression imputation method of missing data on the response variable, using functional principal component regression to estimate the functional coefficient of the model. We study the asymptotic behaviour of the prediction error when missing data are replaced by the imputed values in the original dataset. The practical behaviour of the method is also studied on simulated data and a real dataset.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"36 1","pages":"172 - 197"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2142222","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Dealing with missing values is an important issue in data observation or data recording process. In this paper, we consider a functional linear regression model with partially observed covariate and missing values in the response. We use a reconstruction operator that aims at recovering the missing parts of the explanatory curves, then we are interested in regression imputation method of missing data on the response variable, using functional principal component regression to estimate the functional coefficient of the model. We study the asymptotic behaviour of the prediction error when missing data are replaced by the imputed values in the original dataset. The practical behaviour of the method is also studied on simulated data and a real dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有部分观测到的协变量和响应中缺失值的泛函线性模型
缺失值的处理是数据观测或记录过程中的一个重要问题。在本文中,我们考虑了一个响应中有部分观测协变量和缺失值的函数线性回归模型。我们使用了一个旨在恢复解释曲线缺失部分的重构算子,然后我们感兴趣的是缺失数据在响应变量上的回归imputation方法,使用函数主成分回归来估计模型的功能系数。我们研究了当缺失数据被原始数据集中的输入值所取代时预测误差的渐近行为。在模拟数据和实际数据集上研究了该方法的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
期刊最新文献
Adaptive and efficient isotonic estimation in Wicksell's problem A general semi-parametric elliptical distribution model for semi-supervised learning Stone's theorem for distributional regression in Wasserstein distance Kernel density estimation for a stochastic process with values in a Riemannian manifold Functional index coefficient models for locally stationary time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1