Adaptive sensor cooperation for predicting human mobility

Paul Baumann
{"title":"Adaptive sensor cooperation for predicting human mobility","authors":"Paul Baumann","doi":"10.1145/2638728.2638843","DOIUrl":null,"url":null,"abstract":"My thesis focuses on the prediction of human mobility. I am interested in gaining a deeper understanding of the factors that influence the performance of human mobility prediction algorithms. The main contributions of my work are: the analyses of different factors that influence the performance of mobility predictors, the design and development of a self-adaptive approach for detecting and recognizing users' relevant places, and estimating users' momentary predictability. The latter contribution aims to enable the possibility for the application scenarios to decide how much to trust the provided predictions and mobility data.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2638843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

My thesis focuses on the prediction of human mobility. I am interested in gaining a deeper understanding of the factors that influence the performance of human mobility prediction algorithms. The main contributions of my work are: the analyses of different factors that influence the performance of mobility predictors, the design and development of a self-adaptive approach for detecting and recognizing users' relevant places, and estimating users' momentary predictability. The latter contribution aims to enable the possibility for the application scenarios to decide how much to trust the provided predictions and mobility data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应传感器协同预测人体移动
我的论文主要是关于人类流动性的预测。我对深入了解影响人类移动性预测算法性能的因素很感兴趣。我工作的主要贡献是:分析影响移动性预测器性能的不同因素,设计和开发一种自适应方法来检测和识别用户的相关地点,以及估计用户的瞬时可预测性。后一项贡献旨在使应用程序场景能够决定在多大程度上信任所提供的预测和移动性数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steered crowdsensing: incentive design towards quality-oriented place-centric crowdsensing Usable consents: tracking and managing use of personal data with a consent transaction receipt The socio-technical superorganism vision A new illness recognition framework using frequent temporal pattern mining Mercury: an application store for open display networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1