Towards a Unified Architecture Powering Scalable Learning Models with IoT Data Streams, Blockchain, and Open Data

Inf. Comput. Pub Date : 2023-06-17 DOI:10.3390/info14060345
Olivier Debauche, Jean Bertin Nkamla Penka, Moad Hani, Adriano Guttadauria, Rachida Ait Abdelouahid, Kaouther Gasmi, Ouafae Ben Hardouz, F. Lebeau, J. Bindelle, H. Soyeurt, N. Gengler, P. Manneback, M. Benjelloun, C. Bertozzi
{"title":"Towards a Unified Architecture Powering Scalable Learning Models with IoT Data Streams, Blockchain, and Open Data","authors":"Olivier Debauche, Jean Bertin Nkamla Penka, Moad Hani, Adriano Guttadauria, Rachida Ait Abdelouahid, Kaouther Gasmi, Ouafae Ben Hardouz, F. Lebeau, J. Bindelle, H. Soyeurt, N. Gengler, P. Manneback, M. Benjelloun, C. Bertozzi","doi":"10.3390/info14060345","DOIUrl":null,"url":null,"abstract":"The huge amount of data produced by the Internet of Things need to be validated and curated to be prepared for the selection of relevant data in order to prototype models, train them, and serve the model. On the other side, blockchains and open data are also important data sources that need to be integrated into the proposed integrative models. It is difficult to find a sufficiently versatile and agnostic architecture based on the main machine learning frameworks that facilitate model development and allow continuous training to continuously improve them from the data streams. The paper describes the conceptualization, implementation, and testing of a new architecture that proposes a use case agnostic processing chain. The proposed architecture is mainly built around the Apache Submarine, an unified Machine Learning platform that facilitates the training and deployment of algorithms. Here, Internet of Things data are collected and formatted at the edge level. They are then processed and validated at the fog level. On the other hand, open data and blockchain data via Blockchain Access Layer are directly processed at the cloud level. Finally, the data are preprocessed to feed scalable machine learning algorithms.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14060345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The huge amount of data produced by the Internet of Things need to be validated and curated to be prepared for the selection of relevant data in order to prototype models, train them, and serve the model. On the other side, blockchains and open data are also important data sources that need to be integrated into the proposed integrative models. It is difficult to find a sufficiently versatile and agnostic architecture based on the main machine learning frameworks that facilitate model development and allow continuous training to continuously improve them from the data streams. The paper describes the conceptualization, implementation, and testing of a new architecture that proposes a use case agnostic processing chain. The proposed architecture is mainly built around the Apache Submarine, an unified Machine Learning platform that facilitates the training and deployment of algorithms. Here, Internet of Things data are collected and formatted at the edge level. They are then processed and validated at the fog level. On the other hand, open data and blockchain data via Blockchain Access Layer are directly processed at the cloud level. Finally, the data are preprocessed to feed scalable machine learning algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向统一架构,支持物联网数据流、区块链和开放数据的可扩展学习模型
物联网产生的大量数据需要经过验证和整理,为选择相关数据做好准备,以便对模型进行原型化、训练和服务于模型。另一方面,区块链和开放数据也是重要的数据源,需要集成到拟议的集成模型中。很难找到一个基于主要机器学习框架的足够通用和不可知的架构,以促进模型开发,并允许持续训练以从数据流中不断改进它们。本文描述了提出用例不可知处理链的新体系结构的概念化、实现和测试。提出的架构主要围绕阿帕奇潜艇构建,这是一个统一的机器学习平台,可以促进算法的训练和部署。在这里,物联网数据是在边缘级别收集和格式化的。然后在雾级对它们进行处理和验证。另一方面,通过区块链访问层的开放数据和区块链数据直接在云层面进行处理。最后,对数据进行预处理,以提供可扩展的机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1