Terahertz metadevices for silicon plasmonics

Chip Pub Date : 2022-12-01 DOI:10.1016/j.chip.2022.100030
Yuan Liang , Hao Yu , Hong Wang , Hao Chi Zhang , Tie Jun Cui
{"title":"Terahertz metadevices for silicon plasmonics","authors":"Yuan Liang ,&nbsp;Hao Yu ,&nbsp;Hong Wang ,&nbsp;Hao Chi Zhang ,&nbsp;Tie Jun Cui","doi":"10.1016/j.chip.2022.100030","DOIUrl":null,"url":null,"abstract":"<div><p>Metamaterial devices (metadevices) have been developed in progress aiming to generate extraordinary performance over traditional devices in the (sub-)terahertz (THz) domain, and their planar integration with complementary-metal-oxide-semiconductor (CMOS) circuits pave a new way to build miniature silicon plasmonics that overcomes existing challenges in chip-to-chip communication. In an effort towards low-power, crosstalk-tolerance, and high-speed data link for future exascale data centers, this article reviews the recent progress on two metamaterials, namely, the spoof surface plasmon polaritons (SPPs), and the split-ring resonator (SRR), as well as their implementations in silicon, focusing primarily on their fundamental theories, design methods, and implementations for future THz communications. Owing to their respective dispersion characteristic at THz, these two metadevices are highly expected to play an important role in miniature integrated circuits and systems toward compact size, dense integration, and outstanding performance. A design example of a fully integrated sub-THz CMOS silicon plasmonic system integrating these two metadevices is provided to demonstrate a dual-channel crosstalk-tolerance and energy-efficient on-off keying (OOK) communication system. Future directions and potential applications for THz metadevices are discussed.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 4","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000284/pdfft?md5=36d37d767112466e41c086969f69624c&pid=1-s2.0-S2709472322000284-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Metamaterial devices (metadevices) have been developed in progress aiming to generate extraordinary performance over traditional devices in the (sub-)terahertz (THz) domain, and their planar integration with complementary-metal-oxide-semiconductor (CMOS) circuits pave a new way to build miniature silicon plasmonics that overcomes existing challenges in chip-to-chip communication. In an effort towards low-power, crosstalk-tolerance, and high-speed data link for future exascale data centers, this article reviews the recent progress on two metamaterials, namely, the spoof surface plasmon polaritons (SPPs), and the split-ring resonator (SRR), as well as their implementations in silicon, focusing primarily on their fundamental theories, design methods, and implementations for future THz communications. Owing to their respective dispersion characteristic at THz, these two metadevices are highly expected to play an important role in miniature integrated circuits and systems toward compact size, dense integration, and outstanding performance. A design example of a fully integrated sub-THz CMOS silicon plasmonic system integrating these two metadevices is provided to demonstrate a dual-channel crosstalk-tolerance and energy-efficient on-off keying (OOK) communication system. Future directions and potential applications for THz metadevices are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅等离子体的太赫兹元器件
超材料器件(metadevices)的发展目标是在(亚)太赫兹(THz)域中产生比传统器件更出色的性能,它们与互补金属氧化物半导体(CMOS)电路的平面集成为构建微型硅等离子体铺平了新的道路,克服了芯片对芯片通信中存在的挑战。为了实现未来百万兆级数据中心的低功耗、串扰容限和高速数据链路,本文综述了两种超材料的最新进展,即欺骗表面等离子激元(SPPs)和分裂环谐振器(SRR),以及它们在硅中的实现,主要关注它们的基本理论、设计方法和未来太赫兹通信的实现。由于它们各自在太赫兹的色散特性,这两种元器件被高度期望在微型集成电路和系统中发挥重要作用,以实现紧凑的尺寸,密集的集成和卓越的性能。本文提供了一个集成这两个元器件的完全集成的亚太赫兹CMOS硅等离子体系统的设计示例,以演示双通道串扰容忍和节能的开关键控(OOK)通信系统。讨论了太赫兹元器件的未来发展方向和潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy Suspended nanomembrane silicon photonic integrated circuits Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1