Methods and mechanisms of gas sensor selectivity

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-09-14 DOI:10.1080/10408436.2021.1941752
Muersha Wusiman, F. Taghipour
{"title":"Methods and mechanisms of gas sensor selectivity","authors":"Muersha Wusiman, F. Taghipour","doi":"10.1080/10408436.2021.1941752","DOIUrl":null,"url":null,"abstract":"Abstract The selectivity of a sensor is the ability to discriminate the target from the interference molecules and display a target-specific sensor response. It is a critical trait for gas sensors that are used in real-time air pollution control, hazardous materials detection, food quality inspection and personal health monitoring. Attaining high target selectivity ensures that sensors will exhibit accurate information about the existence and concentration of a target gas, which is essential for reliable sensor response. To obtain target selectivity, it is critical to determine the optimum modification technique and receptor materials as well as to understand how each method works and how it could be designed for a specific target. For this purpose, in this review we present the working principles of the three leading chemical modification methods including catalyst decoration, composite formation, and surface functionalization, as well as the selection criteria of various recognition materials. Throughout the report, we offer a rich apprehension of these techniques by providing mechanistic insights, application areas, advantages, disadvantages, and plausible applications for the invention of the target-specific gas sensors.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"1 1","pages":"416 - 435"},"PeriodicalIF":8.1000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Solid State and Materials Sciences","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10408436.2021.1941752","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 23

Abstract

Abstract The selectivity of a sensor is the ability to discriminate the target from the interference molecules and display a target-specific sensor response. It is a critical trait for gas sensors that are used in real-time air pollution control, hazardous materials detection, food quality inspection and personal health monitoring. Attaining high target selectivity ensures that sensors will exhibit accurate information about the existence and concentration of a target gas, which is essential for reliable sensor response. To obtain target selectivity, it is critical to determine the optimum modification technique and receptor materials as well as to understand how each method works and how it could be designed for a specific target. For this purpose, in this review we present the working principles of the three leading chemical modification methods including catalyst decoration, composite formation, and surface functionalization, as well as the selection criteria of various recognition materials. Throughout the report, we offer a rich apprehension of these techniques by providing mechanistic insights, application areas, advantages, disadvantages, and plausible applications for the invention of the target-specific gas sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体传感器选择性的方法和机理
传感器的选择性是区分目标分子和干扰分子并显示特定目标的传感器响应的能力。它是用于实时空气污染控制、有害物质检测、食品质量检测和个人健康监测的气体传感器的关键特性。获得高目标选择性确保传感器将显示有关目标气体存在和浓度的准确信息,这对于可靠的传感器响应至关重要。为了获得目标选择性,确定最佳修饰技术和受体材料以及了解每种方法的工作原理以及如何针对特定目标设计它是至关重要的。为此,本文综述了催化剂修饰、复合材料形成和表面功能化三种主要的化学改性方法的工作原理,以及各种识别材料的选择标准。在整个报告中,我们通过提供这些技术的机理见解、应用领域、优点、缺点以及目标特定气体传感器发明的合理应用,对这些技术进行了丰富的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.10
自引率
2.80%
发文量
0
审稿时长
3 months
期刊介绍: Critical Reviews in Solid State and Materials Sciences covers a wide range of topics including solid state materials properties, processing, and applications. The journal provides insights into the latest developments and understandings in these areas, with an emphasis on new and emerging theoretical and experimental topics. It encompasses disciplines such as condensed matter physics, physical chemistry, materials science, and electrical, chemical, and mechanical engineering. Additionally, cross-disciplinary engineering and science specialties are included in the scope of the journal.
期刊最新文献
Role of buffer layers on the strain-induced insulator-metal transition of VO2 thin films: a review Dynamic recrystallization during solid state friction stir welding/processing/additive manufacturing: Mechanisms, microstructure evolution, characterization, modeling techniques and challenges Recent advances in graphene allotropes-based fire detection sensors Recent advances in magnesium alloys and its composites for bioimplant applications: Processing, matrix, reinforcement, and corrosion perspectives Carbon nano-onions reinforced nanocomposites: Fabrication, computational modeling techniques and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1