{"title":"A Novel Method for Person Tracking Based K-NN : Comparison with Sift and Mean Shift Method","authors":"Asmaa Ait Moulay, A. Amine","doi":"10.5121/SIPIJ.2017.8104","DOIUrl":null,"url":null,"abstract":"Object tracking can be defined as the process of detecting an object of interest from a video scene and keeping track of its motion, orientation, occlusion etc. in order to extract useful information. It is indeed a challenging problem and it’s an important task. Many researchers are getting attracted in the field of computer vision, specifically the field of object tracking in video surveillance. The main purpose of this paper is to give to the reader information of the present state of the art object tracking, together with presenting steps involved in Background Subtraction and their techniques. In related literature we found three main methods of object tracking: the first method is the optical flow; the second is related to the background subtraction, which is divided into two types presented in this paper, then the temporal differencing and the SIFT method and the last one is the mean shift method. We present a novel approach to background subtraction that compare a current frame with the background model that we have set before, so we can classified each pixel of the image as a foreground or a background element, then comes the tracking step to present our object of interest, which is a person, by his centroid. The tracking step is divided into two different methods, the surface method and the K-NN method, both are explained in the paper. Our proposed method is implemented and evaluated using CAVIAR database.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"269 1","pages":"45-59"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2017.8104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Object tracking can be defined as the process of detecting an object of interest from a video scene and keeping track of its motion, orientation, occlusion etc. in order to extract useful information. It is indeed a challenging problem and it’s an important task. Many researchers are getting attracted in the field of computer vision, specifically the field of object tracking in video surveillance. The main purpose of this paper is to give to the reader information of the present state of the art object tracking, together with presenting steps involved in Background Subtraction and their techniques. In related literature we found three main methods of object tracking: the first method is the optical flow; the second is related to the background subtraction, which is divided into two types presented in this paper, then the temporal differencing and the SIFT method and the last one is the mean shift method. We present a novel approach to background subtraction that compare a current frame with the background model that we have set before, so we can classified each pixel of the image as a foreground or a background element, then comes the tracking step to present our object of interest, which is a person, by his centroid. The tracking step is divided into two different methods, the surface method and the K-NN method, both are explained in the paper. Our proposed method is implemented and evaluated using CAVIAR database.