{"title":"Effect of dissimilarity of N and mass flow rates on yearly overall energy, exergy, and efficiency of PVT-FPC included dual-slope solar desalting units","authors":"Hari Krishna, Jeeoot Singh, V. Dwivedi, D. Singh","doi":"10.2166/ws.2023.175","DOIUrl":null,"url":null,"abstract":"\n \n This research paper investigates the impact of variation in the number of collectors (N) and mass flow rate (ṁfr) on yearly overall energy, exergy, and efficiency of a dual-slope solar desalting unit incorporated with N number of photovoltaic thermal flat plate collectors (NPVT-FPC-DSU). The denouement of this research work will be useful for the designer and installer of such a system in deciding the number of collectors according to the requirement. An exhaustive calculation is carried out considering all four kinds of climatic conditions in each month of the year for the weather of New Delhi, India. Fundamental equations of NPVT-FPC-DSU and all pertinent sets of values have been dined to the data processing code developed in MATLAB to estimate annual freshwater production, energy, thermal and electrical exergies, overall energy, exergy, and efficiency. Finally, values of these parameters except annual overall electrical energy recede with the augmentation in ṁfr value, and they become approximately constant exceeding ṁfr value of 0.10 kg/s. Conversely, an increase in the values of the above-mentioned parameters has been obtained with the increase in the value of N. Moreover, the optimum value of N is found to be 4 and 8 from yearly overall energy and exergy efficiency viewpoints, respectively.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"9 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper investigates the impact of variation in the number of collectors (N) and mass flow rate (ṁfr) on yearly overall energy, exergy, and efficiency of a dual-slope solar desalting unit incorporated with N number of photovoltaic thermal flat plate collectors (NPVT-FPC-DSU). The denouement of this research work will be useful for the designer and installer of such a system in deciding the number of collectors according to the requirement. An exhaustive calculation is carried out considering all four kinds of climatic conditions in each month of the year for the weather of New Delhi, India. Fundamental equations of NPVT-FPC-DSU and all pertinent sets of values have been dined to the data processing code developed in MATLAB to estimate annual freshwater production, energy, thermal and electrical exergies, overall energy, exergy, and efficiency. Finally, values of these parameters except annual overall electrical energy recede with the augmentation in ṁfr value, and they become approximately constant exceeding ṁfr value of 0.10 kg/s. Conversely, an increase in the values of the above-mentioned parameters has been obtained with the increase in the value of N. Moreover, the optimum value of N is found to be 4 and 8 from yearly overall energy and exergy efficiency viewpoints, respectively.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.