{"title":"Particulate matter with a diameter of 2.5 μm causes multiple pathological dysfunctions as presented by various biomarkers","authors":"Shawn Kaura, Yuchuan Ding","doi":"10.4103/ed.ed_30_19","DOIUrl":null,"url":null,"abstract":"Particulate matter (PM) is a growing public health concern due to growing economy rooted in the worldwide technological development. PM with a diameter of 2.5 μm (PM2.5) enters the body due to its small size and can accrue in the lungs, enter circulation, and deposit itself along the endothelial walls. Understanding the different types of PM and the various biomarkers that accumulate in the body is imperative to understanding mechanisms of disease development to create potential treatment plans. Three main effects of PM2.5are examined: pro-inflammatory cytokines release upon exposure, DNA conformation breakage, and cancer metabolite accumulation. The pro-inflammatory cytokines release after periodical exposure to PM2.5revealed that despite the concentration of PM, the bodily release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 was elevated. IL-8 was universally secreted in highest amounts by the body. The potential role that DNA conformation breakage could play in disease onset or progression in specifically hepatocyte cells showed that DNA conformation breakage was inevitable in disease progression. Cancer onset as a result of PM2.5exposure was deemed attributable to reactive oxygen species properties in the PM as well as various metabolic dysfunctions. This mini-review examines some of the biomarkers that result from PM2.5exposure and attempts to provide insight into how legislative and community efforts can curb the rising rates of PM in the air.","PeriodicalId":11702,"journal":{"name":"Environmental Disease","volume":"12 2 1","pages":"57 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ed.ed_30_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Particulate matter (PM) is a growing public health concern due to growing economy rooted in the worldwide technological development. PM with a diameter of 2.5 μm (PM2.5) enters the body due to its small size and can accrue in the lungs, enter circulation, and deposit itself along the endothelial walls. Understanding the different types of PM and the various biomarkers that accumulate in the body is imperative to understanding mechanisms of disease development to create potential treatment plans. Three main effects of PM2.5are examined: pro-inflammatory cytokines release upon exposure, DNA conformation breakage, and cancer metabolite accumulation. The pro-inflammatory cytokines release after periodical exposure to PM2.5revealed that despite the concentration of PM, the bodily release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 was elevated. IL-8 was universally secreted in highest amounts by the body. The potential role that DNA conformation breakage could play in disease onset or progression in specifically hepatocyte cells showed that DNA conformation breakage was inevitable in disease progression. Cancer onset as a result of PM2.5exposure was deemed attributable to reactive oxygen species properties in the PM as well as various metabolic dysfunctions. This mini-review examines some of the biomarkers that result from PM2.5exposure and attempts to provide insight into how legislative and community efforts can curb the rising rates of PM in the air.