Synthesis and Characterization of Betulinic Acid-Aminopropyltriethoxysilane Compounds and Their Assembly onto NanoporousAlumina Surfaces as Potential Therapeutic Agents

Abdul Hadi Mahmud, A. Jani, M. Ali
{"title":"Synthesis and Characterization of Betulinic Acid-Aminopropyltriethoxysilane Compounds and Their Assembly onto NanoporousAlumina Surfaces as Potential Therapeutic Agents","authors":"Abdul Hadi Mahmud, A. Jani, M. Ali","doi":"10.4172/2324-8777.1000226","DOIUrl":null,"url":null,"abstract":"The present study describes the synthesizing and attaching of betulinic acid-aminopropyl triethoxysilane (BA-APTES) on top of the nanoporous alumina (NA) surface. The NA was fabricated by using electrochemical anodization process under an applied voltage of 40 V for 20 hours resulting in average pore size of 45 nm characterized by Scanning Electron Microscope (SEM). The well-recognized therapeutic compound, betulinic acid (BA) was first extracted from the bark of Melaleuca cajuputi plant and further purified by column chromatography. The purified BA was incorporated with APTES using 1-hydroxybenzotriazole hydrate (HOBt) and O-(Benzotriazol-1-yl)-N,N,N’-tetramethyluronium hexafluorophosphate (HBTU) as a peptide coupling agent. The synthesized BA-APTES was silanized on top of the fabricated NA surface. The aromatic portion of 1H and 13C of the synthesized BA-APTES compound was validated by means of Nuclear Magnetic Resonance (NMR). The FTIR spectra show emerging peaks at 2900 cm-1 and 1250 cm-1 signifying the present of aldehyde and also aliphatic amine on NA, respectively. With the aid of XPS analysis, the chemical composition of BA-APTES has evidenced that the presence of the compounds on the surface of NA membrane. Hence, the authors suggest that the modified NA surface has a potential to be applied as a new material for therapeutic agent.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"30 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study describes the synthesizing and attaching of betulinic acid-aminopropyl triethoxysilane (BA-APTES) on top of the nanoporous alumina (NA) surface. The NA was fabricated by using electrochemical anodization process under an applied voltage of 40 V for 20 hours resulting in average pore size of 45 nm characterized by Scanning Electron Microscope (SEM). The well-recognized therapeutic compound, betulinic acid (BA) was first extracted from the bark of Melaleuca cajuputi plant and further purified by column chromatography. The purified BA was incorporated with APTES using 1-hydroxybenzotriazole hydrate (HOBt) and O-(Benzotriazol-1-yl)-N,N,N’-tetramethyluronium hexafluorophosphate (HBTU) as a peptide coupling agent. The synthesized BA-APTES was silanized on top of the fabricated NA surface. The aromatic portion of 1H and 13C of the synthesized BA-APTES compound was validated by means of Nuclear Magnetic Resonance (NMR). The FTIR spectra show emerging peaks at 2900 cm-1 and 1250 cm-1 signifying the present of aldehyde and also aliphatic amine on NA, respectively. With the aid of XPS analysis, the chemical composition of BA-APTES has evidenced that the presence of the compounds on the surface of NA membrane. Hence, the authors suggest that the modified NA surface has a potential to be applied as a new material for therapeutic agent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白桦酸-氨基丙基三乙氧基硅烷化合物的合成、表征及其在纳米多孔氧化铝表面的组装
本文研究了白桦酸-氨基丙基三乙氧基硅烷(BA-APTES)的合成及其在纳米多孔氧化铝(NA)表面的吸附。采用电化学阳极氧化工艺,在40 V电压下氧化20 h,制备出平均孔径为45 nm的NA,扫描电镜(SEM)对其进行了表征。白桦酸(BA)是一种公认的具有治疗作用的化合物,首次从千层树的树皮中提取,并通过柱层析进一步纯化。纯化后的BA以1-羟基苯并三唑水合物(HOBt)和O-(苯并三唑-1-基)-N,N,N ' -四甲基六氟磷酸铵(HBTU)作为肽偶联剂与APTES结合。合成的BA-APTES在制备的NA表面上进行硅化处理。通过核磁共振(NMR)对合成的BA-APTES化合物的1H和13C芳香部分进行了验证。FTIR光谱在2900 cm-1和1250 cm-1处出现峰,表明NA上存在醛和脂肪胺。通过XPS分析,BA-APTES的化学成分证明了NA膜表面存在这些化合物。因此,作者认为,修饰后的NA表面具有作为治疗剂新材料应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photovoltaic Properties and Surface Analysis of Mixed (SnS2)x (CdS)1-x Thin Films by X-ray Photoelectron Spectroscopy (XPS) Body Weight and Serum IgE Levels in Wistar Albino Rats Exposed to Chili Pepper (Capsicum annuum L.) Nanomaterial Approaches for the Prevention, Diagnosis and Treatment of COVID-19: A Paradigm Shift Colour Changes Associated with the Synthesis of Copper Oxide Nanoparticles Design and Development of 3D House Printer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1