{"title":"A Distribution-based Regression for Real-time COVID-19 Cases Detection from Chest X-ray and CT Images","authors":"Nuha Zamzami, Pantea Koochemeshkian, N. Bouguila","doi":"10.1109/IRI49571.2020.00023","DOIUrl":null,"url":null,"abstract":"The novel coronavirus (COVID-19) that started last December in Wuhan, Hubei Province, China has become a serious healthcare threat with over five million confirmed cases in 215 countries around the world as on May 20. The World Health Organization recommends a rapid diagnosis and immediate isolation of suspected cases. Thus, there is an imminent need to develop an automatic real-time detection system as a quick alternative diagnosis option to control the virus spread. In this work, we propose a regression model based on a flexible distribution called shifted-scaled Dirichlet for real-time detection of coronavirus pneumonia infected patient using chest X-ray radiographs. To derive the parameters of our proposed model, we adopt the maximum likelihood method, where we update the parameters based on the stochastic gradient descent. The experimental results demonstrate that our approach is highly effective for detecting COVID-19 cases and understand the infection on a real-time basis with high accuracy up to 97%.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The novel coronavirus (COVID-19) that started last December in Wuhan, Hubei Province, China has become a serious healthcare threat with over five million confirmed cases in 215 countries around the world as on May 20. The World Health Organization recommends a rapid diagnosis and immediate isolation of suspected cases. Thus, there is an imminent need to develop an automatic real-time detection system as a quick alternative diagnosis option to control the virus spread. In this work, we propose a regression model based on a flexible distribution called shifted-scaled Dirichlet for real-time detection of coronavirus pneumonia infected patient using chest X-ray radiographs. To derive the parameters of our proposed model, we adopt the maximum likelihood method, where we update the parameters based on the stochastic gradient descent. The experimental results demonstrate that our approach is highly effective for detecting COVID-19 cases and understand the infection on a real-time basis with high accuracy up to 97%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分布的回归方法在胸部x线和CT图像中实时检测COVID-19病例
去年12月在中国湖北省武汉市爆发的新型冠状病毒感染症(COVID-19),截至5月20日,在全球215个国家确诊病例超过500万例,已成为严重的医疗威胁。世界卫生组织建议迅速诊断并立即隔离疑似病例。因此,迫切需要开发一种自动实时检测系统,作为控制病毒传播的快速替代诊断选择。在这项工作中,我们提出了一种基于移位尺度Dirichlet灵活分布的回归模型,用于胸部x线片实时检测冠状病毒肺炎感染者。为了得到我们所提出的模型的参数,我们采用了极大似然方法,其中我们基于随机梯度下降更新参数。实验结果表明,该方法对检测COVID-19病例非常有效,实时了解感染情况,准确率高达97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation. Natural Language-based Integration of Online Review Datasets for Identification of Sex Trafficking Businesses. An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19 Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery Latent Feature Modelling for Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1