Minimal Width for Universal Property of Deep RNN

Changhoon Song, Geonho Hwang, Jun ho Lee, Myung-joo Kang
{"title":"Minimal Width for Universal Property of Deep RNN","authors":"Changhoon Song, Geonho Hwang, Jun ho Lee, Myung-joo Kang","doi":"10.48550/arXiv.2211.13866","DOIUrl":null,"url":null,"abstract":"A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or $L^p$ function with the widths $d_x+d_y+2$ and $\\max\\{d_x+1,d_y\\}$, respectively, where the target function maps a finite sequence of vectors in $\\mathbb{R}^{d_x}$ to a finite sequence of vectors in $\\mathbb{R}^{d_y}$. We also compute the additional width required if the activation function is $\\tanh$ or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"200 1","pages":"121:1-121:41"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.13866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep networks with bounded widths are more effective than wide networks in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show that a deep RNN with ReLU activation can approximate any continuous function or $L^p$ function with the widths $d_x+d_y+2$ and $\max\{d_x+1,d_y\}$, respectively, where the target function maps a finite sequence of vectors in $\mathbb{R}^{d_x}$ to a finite sequence of vectors in $\mathbb{R}^{d_y}$. We also compute the additional width required if the activation function is $\tanh$ or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and proof technique can be an initial step toward further research on deep RNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度RNN通用性的最小宽度
递归神经网络(RNN)是一种广泛应用于序列数据处理的深度学习网络。无限宽RNN可以模拟动态系统,在紧域上近似任何开放的动态系统。一般来说,在实践中,有界宽度的深度网络比宽网络更有效;然而,深窄结构的普遍近似定理还没有得到广泛的研究。在本研究中,我们证明了深窄rnn的普遍性,并证明了普遍性的最小宽度的上界可以独立于数据的长度。具体来说,我们证明了具有ReLU激活的深度RNN可以分别近似宽度为$d_x+d_y+2$和$\max\{d_x+1,d_y\}$的任何连续函数或$L^p$函数,其中目标函数将$\mathbb{R}^{d_x}$中的有限向量序列映射到$\mathbb{R}^{d_y}$中的有限向量序列。如果激活函数为$\tanh$或更多,我们还计算所需的额外宽度。此外,我们证明了其他递归网络的通用性,如双向rnn。将多层感知器和RNN连接起来,我们的理论和证明技术可以成为进一步研究深度RNN的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1