Experimental validation of a numerical model for a sand-based seasonal thermal energy storage

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2023-03-19 DOI:10.1080/19401493.2023.2191338
Rebecca I. Pinto, I. Beausoleil-Morrison
{"title":"Experimental validation of a numerical model for a sand-based seasonal thermal energy storage","authors":"Rebecca I. Pinto, I. Beausoleil-Morrison","doi":"10.1080/19401493.2023.2191338","DOIUrl":null,"url":null,"abstract":"A research facility with solar thermal collector system and a water-saturated, sand-based seasonal thermal energy storage (SSTES) is used to provide space heating and domestic hot water heating to homes in cold climates. A 3D finite difference model of the heat transfer in and around the SSTES is presented and validated with measured data. The SSTES has lost moisture over time, making its thermal properties difficult to estimate. Additionally, the experimental data shows the SSTES losing heat at twice the expected rate, potentially due to incorrect thermal parameters from the manufacturer and the SSTES insulation being damaged or degraded. The final numerical model was validated over a 163-day period where energy was being injected into and extracted from the SSTES. It was found that the seasonal performance of the SSTES could be predicted by a conduction-only heat transfer model, and this model is suitable to be included in BPS tools.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"5 1","pages":"644 - 659"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2191338","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A research facility with solar thermal collector system and a water-saturated, sand-based seasonal thermal energy storage (SSTES) is used to provide space heating and domestic hot water heating to homes in cold climates. A 3D finite difference model of the heat transfer in and around the SSTES is presented and validated with measured data. The SSTES has lost moisture over time, making its thermal properties difficult to estimate. Additionally, the experimental data shows the SSTES losing heat at twice the expected rate, potentially due to incorrect thermal parameters from the manufacturer and the SSTES insulation being damaged or degraded. The final numerical model was validated over a 163-day period where energy was being injected into and extracted from the SSTES. It was found that the seasonal performance of the SSTES could be predicted by a conduction-only heat transfer model, and this model is suitable to be included in BPS tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
砂基季节性蓄热数值模型的实验验证
研究设施包括太阳能集热器系统和水饱和沙基季节性热能储存(SSTES),用于为寒冷气候下的家庭提供空间供暖和生活热水供暖。建立了SSTES内部和周围传热的三维有限差分模型,并用实测数据进行了验证。随着时间的推移,SSTES失去了水分,使其热性能难以估计。此外,实验数据显示,SSTES的失热率是预期的两倍,可能是由于制造商提供的热参数不正确以及SSTES绝缘被损坏或退化。最后的数值模型在163天的周期内得到验证,该周期内能量被注入SSTES并从SSTES中提取。研究结果表明,单传导传热模型可以很好地预测SSTES的季节特性,该模型适合纳入BPS工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
Comparing overheating risk and mitigation strategies for two Canadian schools by using building simulation calibrated with measured data Using Fourier series to obtain cross periodic wall response factors Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1