A Study on the Finite Element Model for Head Injury in Facial Collision Accident

Q4 Biochemistry, Genetics and Molecular Biology Molecular & Cellular Biomechanics Pub Date : 2020-01-01 DOI:10.32604/mcb.2019.07534
Bin Yang, Hao Sun, Aiyuan Wang, Qun Wang
{"title":"A Study on the Finite Element Model for Head Injury in Facial Collision Accident","authors":"Bin Yang, Hao Sun, Aiyuan Wang, Qun Wang","doi":"10.32604/mcb.2019.07534","DOIUrl":null,"url":null,"abstract":": In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the head-neck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.07534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

: In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the head-neck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面部碰撞事故头部损伤有限元模型研究
目的:预测和评价碰撞事故中面部撞击对头部损伤的损伤机制和生物力学反应。结合现代医学成像技术,即计算机断层扫描(CT)和磁共振成像(MRI),建立了具有详细颅面结构的人体头颈部几何和有限元模型。通过尸体头部碰撞试验验证了头颈部有限元模型的有效性。将整个头颈模型的颅内压、颅骨动态响应和颅脑相对位移与实验数据进行比较。模拟了9例典型的面部交通事故,详细讨论了应力波通过面部和颅骨向颅内内容物的传播路径。获得颅内压、von Mises应力和剪应力分布。事实证明,面部结构以最自然的方式耗散了大量的冲击能量,保护了大脑。应力波在颅脑内的传播路径和分布决定了脑撞击损伤的发生机制,为面部撞击所致颅脑损伤的诊断、治疗和保护提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
期刊最新文献
Hot Topics of Molecular and Cellular Biomechanics in 2022 CFD Study on Hemodynamic Characteristics of Inferior Vena Cava Filter Affected by Blood Vessel Diameter Can PAPE-Induced Increases in Jump Height Be Explained by Jumping Kinematics? Reconstruction of the Hindlimb Locomotion of Confuciusornis (Aves) and Its Implication for the Origin of Avian Flight Classification of Leukemia and Leukemoid Using VGG-16 Convolutional Neural Network Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1