S. J. Prasad, P. A. Francis, T. B. Balakrishnan Nair, S. Shenoi, T. Vijayalakshmi
{"title":"Oil spill trajectory prediction with high-resolution ocean currents","authors":"S. J. Prasad, P. A. Francis, T. B. Balakrishnan Nair, S. Shenoi, T. Vijayalakshmi","doi":"10.1080/1755876X.2019.1606691","DOIUrl":null,"url":null,"abstract":"ABSTRACT Simulated ocean currents from ocean circulation models along with the surface winds are generally used to force an oil spill trajectory model. Ocean circulation is a key factor in determining the drift of the spilled marine pollutants. The simulations of the drift pattern of spilled oil, when forced by the ocean currents from two ocean models, are presented here. Merchant Vessel (MV) Rak sunk at 72.4865°E, 18.7715°N, on 4 August 2011. As per the information from Indian Coast Guard, approximately 122.5 tons of fuel oil was spilled from the vessel from 5 August 2011 to 12 August 2011. An oil spill trajectory model, General NOAA Operational Modeling Environment (GNOME), was used to simulate the oil drift pattern from MV Rak from 1000 hours of 5 August 2011 to 1300 hours of 12 August 2011. GNOME was forced with winds from European Centre for Medium Range Weather Forecast (ECMWF) and ocean currents from Indian Ocean Forecasting System (INDOFOS) and High-resolution Operational Ocean Forecasting and reanalysis System (HOOFS). We found that the oil drift pattern obtained when forced with ocean currents from HOOFS was in better agreement with the actual track, compared to the one obtained while using INDOFOS currents.","PeriodicalId":50105,"journal":{"name":"Journal of Operational Oceanography","volume":"177 1","pages":"84 - 99"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/1755876X.2019.1606691","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Simulated ocean currents from ocean circulation models along with the surface winds are generally used to force an oil spill trajectory model. Ocean circulation is a key factor in determining the drift of the spilled marine pollutants. The simulations of the drift pattern of spilled oil, when forced by the ocean currents from two ocean models, are presented here. Merchant Vessel (MV) Rak sunk at 72.4865°E, 18.7715°N, on 4 August 2011. As per the information from Indian Coast Guard, approximately 122.5 tons of fuel oil was spilled from the vessel from 5 August 2011 to 12 August 2011. An oil spill trajectory model, General NOAA Operational Modeling Environment (GNOME), was used to simulate the oil drift pattern from MV Rak from 1000 hours of 5 August 2011 to 1300 hours of 12 August 2011. GNOME was forced with winds from European Centre for Medium Range Weather Forecast (ECMWF) and ocean currents from Indian Ocean Forecasting System (INDOFOS) and High-resolution Operational Ocean Forecasting and reanalysis System (HOOFS). We found that the oil drift pattern obtained when forced with ocean currents from HOOFS was in better agreement with the actual track, compared to the one obtained while using INDOFOS currents.
期刊介绍:
The Journal of Operational Oceanography will publish papers which examine the role of oceanography in contributing to the fields of: Numerical Weather Prediction; Development of Climatologies; Implications of Ocean Change; Ocean and Climate Forecasting; Ocean Observing Technologies; Eutrophication; Climate Assessment; Shoreline Change; Marine and Sea State Prediction; Model Development and Validation; Coastal Flooding; Reducing Public Health Risks; Short-Range Ocean Forecasting; Forces on Structures; Ocean Policy; Protecting and Restoring Ecosystem health; Controlling and Mitigating Natural Hazards; Safe and Efficient Marine Operations