Influence of ferrimagnetic resonance on conversion of electromagnetic energy by a system consisting of two cylinders into a mechanical one

IF 0.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia Pub Date : 2023-03-28 DOI:10.30837/rt.2023.1.212.09
G. Komarova
{"title":"Influence of ferrimagnetic resonance on conversion of electromagnetic energy by a system consisting of two cylinders into a mechanical one","authors":"G. Komarova","doi":"10.30837/rt.2023.1.212.09","DOIUrl":null,"url":null,"abstract":"This work presents the analysis of the integral equation of macroscopic electrodynamics, the solution of the problem of diffraction of a plane polarized electromagnetic wave on a system consisting of two ferrite cylinders of radii corresponding to spatial resonance (R ≤ 0.1∙ λo, λо is the wavelength in free space ). The electromagnetic fields inside the first (second) cylinder are presented as the sum of the fields of the solitary first (second) cylinder, a plane-parallel wave falls on it and is scattered by the second (first) solitary cylinder. The expressions for the fields satisfy Maxwell's equations, boundary conditions for two cylinders, and integral equations. The influence of the distance between the centers of the cylinders on the strength of the electromagnetic field in the middle of the ferrite cylinders has been studied. It has been established that in a system consisting of two cylinders, a group resonance arises due to their mutual arrangement in space. The transformation of microwave energy on a system consisting of two ferrite cylinders depending on the value of their resonant radii at ferrimagnetic resonance has been studied. An inhomogeneous electromagnetic wave created by propagating in free space with a power flux density of 622 kW/m2 and a length of 3.2 cm reflected from a metal screen acts on a system of ferrite cylinders, the total length of which is 1.28 m, and the resonant radius is 3.863 mm with a force equal to 4 N. The results of studying the phenomenon of diffraction on a system consisting of two ferrite cylinders show that the total force with which the inhomogeneity of a standing electromagnetic wave acts on two cylinders is 2.8 times greater than the force acting on a solitary cylinder.","PeriodicalId":41675,"journal":{"name":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30837/rt.2023.1.212.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the analysis of the integral equation of macroscopic electrodynamics, the solution of the problem of diffraction of a plane polarized electromagnetic wave on a system consisting of two ferrite cylinders of radii corresponding to spatial resonance (R ≤ 0.1∙ λo, λо is the wavelength in free space ). The electromagnetic fields inside the first (second) cylinder are presented as the sum of the fields of the solitary first (second) cylinder, a plane-parallel wave falls on it and is scattered by the second (first) solitary cylinder. The expressions for the fields satisfy Maxwell's equations, boundary conditions for two cylinders, and integral equations. The influence of the distance between the centers of the cylinders on the strength of the electromagnetic field in the middle of the ferrite cylinders has been studied. It has been established that in a system consisting of two cylinders, a group resonance arises due to their mutual arrangement in space. The transformation of microwave energy on a system consisting of two ferrite cylinders depending on the value of their resonant radii at ferrimagnetic resonance has been studied. An inhomogeneous electromagnetic wave created by propagating in free space with a power flux density of 622 kW/m2 and a length of 3.2 cm reflected from a metal screen acts on a system of ferrite cylinders, the total length of which is 1.28 m, and the resonant radius is 3.863 mm with a force equal to 4 N. The results of studying the phenomenon of diffraction on a system consisting of two ferrite cylinders show that the total force with which the inhomogeneity of a standing electromagnetic wave acts on two cylinders is 2.8 times greater than the force acting on a solitary cylinder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁磁共振对由两个圆柱体组成的系统将电磁能转换为机械圆柱体的影响
本文分析了宏观电动力学积分方程,求解了平面极化电磁波在两个半径为空间共振(R≤0.1∙λo, λ为自由空间中的波长)的铁氧体圆柱体系统上的衍射问题。第一(第二)圆柱体内部的电磁场表示为孤立的第一(第二)圆柱体的场之和,一个平行波落在其上并被第二(第一)孤立圆柱体散射。场的表达式满足麦克斯韦方程组、两圆柱边界条件和积分方程。研究了圆柱体中心间距对铁氧体圆柱体中间电磁场强度的影响。在由两个圆柱体组成的系统中,由于它们在空间上的相互排列,会产生群共振。研究了微波能量在铁氧体圆柱体系统中随铁氧体共振半径的变化规律。在自由空间中以功率通量密度为622 kW/m2、长度为3.2 cm的非均匀电磁波从金属屏反射,作用于铁氧体圆柱体系统,该系统的总长度为1.28 m。谐振半径为3.863 mm,力为4 n。对两个铁氧体圆柱体系统的衍射现象进行了研究,结果表明,驻波的非均匀性作用在两个圆柱体上的总力是作用在一个孤立圆柱体上的力的2.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia
Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
0
期刊最新文献
Combined heat conductive boards with polyimide dielectrics Synthesis and analysis of the trace detector of air objects of an interrogating radar system Creating a call center test bench for load balancing Asterisk servers in a cluster Current state and development trends of class E oscillators: an overview Experimental studies of a lidar emitter built according to the oscillator-amplifier scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1