Life Span of Ventricular Fibrillation Frequencies

Bum-Rak Choi, Wonchul Nho, Tong Liu, G. Salama
{"title":"Life Span of Ventricular Fibrillation Frequencies","authors":"Bum-Rak Choi, Wonchul Nho, Tong Liu, G. Salama","doi":"10.1161/01.RES.0000031801.84308.F4","DOIUrl":null,"url":null,"abstract":"Abstract— The nature and organization of electrical activity during ventricular fibrillation (VF) are important and controversial subjects dominated by 2 competing theories: the wavebreak and the dominant mother rotor hypothesis. To investigate spatiotemporal characteristics of ventricular fibrillation (VF), transmembrane potentials (Vm) were recorded from multiple sites of perfused rabbit hearts using a voltage-sensitive dye and a photodiode array or a CCD camera, and the time-frequency characteristics of Vm were analyzed by short-time fast Fourier transform (FFT) or generalized time-frequency representation with a cone-shaped kernel. The analysis was applied to all pixels to track VF frequencies in time and space. VF consisted of blobs, which are groups of contiguous pixels with a common frequency and an ill-defined shape. At any time t, several VF frequency blobs coexisted in the field of view, and the number of coexisting blobs was on average 5.9±2.1 (n=8 hearts) as they appeared and disappeared discontinuously with time and were not fixed in space. The life span of frequency blobs from birth to either annihilation or breakup to another frequency had a half-life of 0.39±0.13 second (n=4 hearts). The Ca2+ channel blocker nifedipine increased the stability of VF frequencies and reduced the number of frequency blobs progressing to a single frequency. In conclusion, VF consists of dynamically changing frequency blobs, which have a short life span and can be modified by pharmacological interventions, suggesting that VF is maintained by dynamically changing multiple wavelets.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000031801.84308.F4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

Abstract— The nature and organization of electrical activity during ventricular fibrillation (VF) are important and controversial subjects dominated by 2 competing theories: the wavebreak and the dominant mother rotor hypothesis. To investigate spatiotemporal characteristics of ventricular fibrillation (VF), transmembrane potentials (Vm) were recorded from multiple sites of perfused rabbit hearts using a voltage-sensitive dye and a photodiode array or a CCD camera, and the time-frequency characteristics of Vm were analyzed by short-time fast Fourier transform (FFT) or generalized time-frequency representation with a cone-shaped kernel. The analysis was applied to all pixels to track VF frequencies in time and space. VF consisted of blobs, which are groups of contiguous pixels with a common frequency and an ill-defined shape. At any time t, several VF frequency blobs coexisted in the field of view, and the number of coexisting blobs was on average 5.9±2.1 (n=8 hearts) as they appeared and disappeared discontinuously with time and were not fixed in space. The life span of frequency blobs from birth to either annihilation or breakup to another frequency had a half-life of 0.39±0.13 second (n=4 hearts). The Ca2+ channel blocker nifedipine increased the stability of VF frequencies and reduced the number of frequency blobs progressing to a single frequency. In conclusion, VF consists of dynamically changing frequency blobs, which have a short life span and can be modified by pharmacological interventions, suggesting that VF is maintained by dynamically changing multiple wavelets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心室颤动频率的寿命
摘要:心室颤动(VF)期间电活动的性质和组织是一个重要而有争议的主题,主要由两种相互竞争的理论主导:波破假说和主导母转子假说。为了研究心室颤动(VF)的时空特征,使用电压敏感染料和光电二极管阵列或CCD相机记录了兔心脏多个部位的跨膜电位(Vm),并采用短时快速傅立叶变换(FFT)或带锥形核的广义时频表示分析了Vm的时频特征。将该分析应用于所有像素,在时间和空间上跟踪VF频率。VF由blobs组成,blobs是一组具有共同频率和不确定形状的连续像素。在任意时刻t,视场中同时存在多个VF频率斑点,随着时间不连续出现和消失,在空间上不固定,平均存在5.9±2.1个(n=8心)。频率团从诞生到湮灭或分裂到另一个频率的半衰期为0.39±0.13秒(n=4心)。Ca2+通道阻滞剂硝苯地平增加了VF频率的稳定性,并减少了频率团进展到单一频率的数量。综上所述,VF由动态变化的频率团组成,其寿命短,可通过药物干预进行修饰,表明VF是通过动态改变多个小波来维持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuron-Derived Orphan Receptor-1 (NOR-1) Modulates Vascular Smooth Muscle Cell Proliferation Functional Compartmentation of Endothelial P2Y Receptor Signaling Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart Increased Exchange Current but Normal Ca2+ Transport via Na+-Ca2+ Exchange During Cardiac Hypertrophy After Myocardial Infarction Functionally Novel Tumor Necrosis Factor-&agr;–Modulated CHR-Binding Protein Mediates Cyclin A Transcriptional Repression in Vascular Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1