{"title":"Investigation of Drug-Packaging Interactions with Mass Spectroscopy Detectors: A Meta-Synthesis of the Literature","authors":"C. Fauchere, M. Berger-Gryllaki, F. Sadeghipour","doi":"10.1515/PTHP-2018-0027","DOIUrl":null,"url":null,"abstract":"Abstract Background The production of hospital-compounded medicines with a longer shelf life raises questions about drug-packaging interactions, especially desorption events involving extractables and leachables (E/L). A meta-synthesis of the literature was performed to describe which mass spectrometer is suitable for identifying and quantifying E/L. Methods A meta-synthesis of studies focused on the identification or quantification of E/L published between January 1997 and December 2017 was performed. Inclusion criteria were E/L studies dealing with pharmaceutical products, in which mass spectrometry (MS) coupled to liquid chromatography (LC) or gas chromatography (GC) was used. The full-text articles had to be available and written in English. Articles about food packaging, environmental contamination, counterfeit compounds, pharmacokinetics, or process-related impurity studies were excluded. Two researchers independently assessed the papers according to a score based on a seven-item questionnaire. Results In total, 32 papers matched our criteria and were included in the meta-synthesis. For qualitative analysis with LC, quadrupole time-of-flight (QTOF; n=4) and ion trap (n=4) mass detectors were used the most; and with GC, single quadrupole (n=8). For quantification studies with LC, QTOF (n=3) and triple quadrupole (n=2) were used the most; and with GC, single quadrupole (n=7). Conclusions For simultaneous qualitative and quantitative analysis of E/L with LC, QTOF or Orbitrap is a suitable detector. For quantitative analysis with LC only, triple quadrupole is suitable. For qualitative and quantitative analysis with GC, single quadrupole can be used.","PeriodicalId":19802,"journal":{"name":"Pharmaceutical Technology in Hospital Pharmacy","volume":"65 1","pages":"3 - 14"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Technology in Hospital Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/PTHP-2018-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Background The production of hospital-compounded medicines with a longer shelf life raises questions about drug-packaging interactions, especially desorption events involving extractables and leachables (E/L). A meta-synthesis of the literature was performed to describe which mass spectrometer is suitable for identifying and quantifying E/L. Methods A meta-synthesis of studies focused on the identification or quantification of E/L published between January 1997 and December 2017 was performed. Inclusion criteria were E/L studies dealing with pharmaceutical products, in which mass spectrometry (MS) coupled to liquid chromatography (LC) or gas chromatography (GC) was used. The full-text articles had to be available and written in English. Articles about food packaging, environmental contamination, counterfeit compounds, pharmacokinetics, or process-related impurity studies were excluded. Two researchers independently assessed the papers according to a score based on a seven-item questionnaire. Results In total, 32 papers matched our criteria and were included in the meta-synthesis. For qualitative analysis with LC, quadrupole time-of-flight (QTOF; n=4) and ion trap (n=4) mass detectors were used the most; and with GC, single quadrupole (n=8). For quantification studies with LC, QTOF (n=3) and triple quadrupole (n=2) were used the most; and with GC, single quadrupole (n=7). Conclusions For simultaneous qualitative and quantitative analysis of E/L with LC, QTOF or Orbitrap is a suitable detector. For quantitative analysis with LC only, triple quadrupole is suitable. For qualitative and quantitative analysis with GC, single quadrupole can be used.