{"title":"Approximating quasi-stationary distributions with interacting reinforced random walks","authors":"A. Budhiraja, Nicolas Fraiman, Adam Waterbury","doi":"10.1051/ps/2021019","DOIUrl":null,"url":null,"abstract":"We propose two numerical schemes for approximating quasi-stationary distributions (QSD) of finite state Markov chains with absorbing states. Both schemes are described in terms of interacting chains where the interaction is given in terms of the total time occupation measure of all particles in the system and has the impact of reinforcing transitions, in an appropriate fashion, to states where the collection of particles has spent more time. The schemes can be viewed as combining the key features of the two basic simulation-based methods for approximating QSD originating from the works of Fleming and Viot (1979) and \n\nAldous, Flannery and Palacios (1998), respectively. The key difference between the two schemes studied here is that in the first method one starts with $a(n)$ particles at time $0$ and number of particles stays constant over time whereas in the second method we start with one particle and at most one particle is added at each time instant in such a manner that there are $a(n)$ particles at time $n$. We prove almost sure convergence to the unique QSD and establish Central Limit Theorems for the two schemes under the key assumption that $a(n)=o(n)$. Exploratory numerical results are presented to illustrate the performance.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"76 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2021019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
We propose two numerical schemes for approximating quasi-stationary distributions (QSD) of finite state Markov chains with absorbing states. Both schemes are described in terms of interacting chains where the interaction is given in terms of the total time occupation measure of all particles in the system and has the impact of reinforcing transitions, in an appropriate fashion, to states where the collection of particles has spent more time. The schemes can be viewed as combining the key features of the two basic simulation-based methods for approximating QSD originating from the works of Fleming and Viot (1979) and
Aldous, Flannery and Palacios (1998), respectively. The key difference between the two schemes studied here is that in the first method one starts with $a(n)$ particles at time $0$ and number of particles stays constant over time whereas in the second method we start with one particle and at most one particle is added at each time instant in such a manner that there are $a(n)$ particles at time $n$. We prove almost sure convergence to the unique QSD and establish Central Limit Theorems for the two schemes under the key assumption that $a(n)=o(n)$. Exploratory numerical results are presented to illustrate the performance.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.