Thermal Performance Enhancement of a Shallow Solar Pond Based on Nanofluids

A. Terfai, Y. Chiba, M. N. Bouaziz
{"title":"Thermal Performance Enhancement of a Shallow Solar Pond Based on Nanofluids","authors":"A. Terfai, Y. Chiba, M. N. Bouaziz","doi":"10.21272/jnep.12(1).01016","DOIUrl":null,"url":null,"abstract":"In this work, the thermal performance enhancement of a shallow solar pond (SSP) was verified theoretically. The SSP operates under the open cycle to extract heat in order to increase own efficiency. SSP was provided with two transparent glass covers to reduce heat loss and increase global warming. It was also coated with a heat insulation material; the bottom of the SSP is painted in black to improve the absorption of solar radiation. In order to enhance heat extraction, five types of nanofluids with different physical properties were passed through a heat exchanger in the form of a serpentine welded to the bottom of the SSP. Five types of metal nanoparticles such as Al2O3, CuO, TiO2, SiO2, and Cu were mixed with pure water under various concentrations ranging from 0 to 5 % to obtain the nanofluids. A numerical model was developed based on the solution of thermal balance equations after discretization by using real meteorological conditions of the Medea city located in Algeria. The simulation was conducted on June 8 from 5 am to 6 am hours for the next day. The obtained results, including thermophysical properties, temperature of the pond and exergy performance, were presented and discussed.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"3 1","pages":"01016-1-01016-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano- and Electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.12(1).01016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, the thermal performance enhancement of a shallow solar pond (SSP) was verified theoretically. The SSP operates under the open cycle to extract heat in order to increase own efficiency. SSP was provided with two transparent glass covers to reduce heat loss and increase global warming. It was also coated with a heat insulation material; the bottom of the SSP is painted in black to improve the absorption of solar radiation. In order to enhance heat extraction, five types of nanofluids with different physical properties were passed through a heat exchanger in the form of a serpentine welded to the bottom of the SSP. Five types of metal nanoparticles such as Al2O3, CuO, TiO2, SiO2, and Cu were mixed with pure water under various concentrations ranging from 0 to 5 % to obtain the nanofluids. A numerical model was developed based on the solution of thermal balance equations after discretization by using real meteorological conditions of the Medea city located in Algeria. The simulation was conducted on June 8 from 5 am to 6 am hours for the next day. The obtained results, including thermophysical properties, temperature of the pond and exergy performance, were presented and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米流体的浅太阳池热性能增强研究
本文从理论上验证了浅太阳池(SSP)的热性能增强。SSP在开式循环下运行,以提取热量,以提高自身效率。SSP提供了两个透明玻璃盖板,以减少热量损失,增加全球变暖。它还涂了一层隔热材料;SSP的底部被涂成黑色,以提高对太阳辐射的吸收。为了加强热提取,五种具有不同物理性质的纳米流体通过焊接在SSP底部的蛇形热交换器。将Al2O3、CuO、TiO2、SiO2和Cu等5种金属纳米颗粒与浓度为0 ~ 5%的纯水混合,得到纳米流体。利用阿尔及利亚美狄亚市的实际气象条件,对热平衡方程进行离散化求解,建立了数值模型。模拟是在6月8日上午5点到第二天早上6点进行的。对所得结果进行了介绍和讨论,包括热物性、池温度和火用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Epoxy-polyester Nanocomposite Materials with Improved Physical and Mechanical Properties for Increasing Transport Vehicle Reliability Influence of Tunable Work Function on SOI-based DMG Multi-channel Junctionless Thin Film Transistor Theoretical Study of Photo-Luminescence Emission Using the Line Shape Function for Semiconductor Quantum Dots First Principle Study and Optimal Doping for High Thermoelectric Performance of TaXSn Materials (X = Co, Ir and Rh) Chemical Approach Based ZnS-ZnO Nanocomposite Synthesis and Assessment of their Structural, Morphological and Photocatalytic Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1