Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Annual Review of Materials Research Pub Date : 2019-07-01 DOI:10.1146/ANNUREV-MATSCI-070218-121843
Jianjun Wang, Bo Wang, Long-qing Chen
{"title":"Understanding, Predicting, and Designing Ferroelectric Domain Structures and Switching Guided by the Phase-Field Method","authors":"Jianjun Wang, Bo Wang, Long-qing Chen","doi":"10.1146/ANNUREV-MATSCI-070218-121843","DOIUrl":null,"url":null,"abstract":"Understanding mesoscale ferroelectric domain structures and their switching behavior under external fields is critical to applications of ferroelectrics. The phase-field method has been established as a powerful tool for probing, predicting, and designing the formation of domain structures under different electromechanical boundary conditions and their switching behavior under electric and/or mechanical stimuli. Here we review the basic framework of the phase-field model of ferroelectrics and its applications to simulating domain formation in bulk crystals, thin films, superlattices, and nanostructured ferroelectrics and to understanding macroscopic and local domain switching under electrical and/or mechanical fields. We discuss the possibility of utilizing the structure-property relationship learned from phase-field simulations to design high-performance relaxor piezoelectrics and electrically tunable thermal conductivity. The review ends with a summary of and an outlook on the potential new applications of the phase-field method of ferroelectrics.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"1 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/ANNUREV-MATSCI-070218-121843","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 94

Abstract

Understanding mesoscale ferroelectric domain structures and their switching behavior under external fields is critical to applications of ferroelectrics. The phase-field method has been established as a powerful tool for probing, predicting, and designing the formation of domain structures under different electromechanical boundary conditions and their switching behavior under electric and/or mechanical stimuli. Here we review the basic framework of the phase-field model of ferroelectrics and its applications to simulating domain formation in bulk crystals, thin films, superlattices, and nanostructured ferroelectrics and to understanding macroscopic and local domain switching under electrical and/or mechanical fields. We discuss the possibility of utilizing the structure-property relationship learned from phase-field simulations to design high-performance relaxor piezoelectrics and electrically tunable thermal conductivity. The review ends with a summary of and an outlook on the potential new applications of the phase-field method of ferroelectrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用相场法来理解、预测和设计铁电畴结构和开关
了解中尺度铁电畴结构及其在外场作用下的开关行为对铁电材料的应用至关重要。相场法已经成为探测、预测和设计不同机电边界条件下畴结构的形成及其在电和/或机械刺激下的开关行为的有力工具。本文回顾了铁电体相场模型的基本框架及其在模拟块体晶体、薄膜、超晶格和纳米结构铁电体中的畴形成以及理解电场和/或机械场下宏观和局部畴切换方面的应用。我们讨论了利用从相场模拟中学到的结构-性能关系来设计高性能弛豫压电材料和电可调导热材料的可能性。最后对相场法在铁电体研究中的潜在新应用进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
期刊最新文献
Chemical Botany: Bottlebrush Polymers in Materials Science Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel Structural Chirality and Electronic Chirality in Quantum Materials Degradation Processes in Current Commercialized Li-Ion Batteries and Strategies to Mitigate Them Oxygen Redox in Alkali-Ion Battery Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1