D. G. Goroso, Alvaro Fraga, Michel Macedo, Carla Fernanda de Miranda Rodrigues, Bruno Mendes de Oliveira Silva, W. Watanabe, D. P. D. Silva, R. R. Silva, J. Puglisi, James Marcin, M. Dharmar
{"title":"Automatic segmentation to characterize anthropometric parameters and cardiovascular indicators in children","authors":"D. G. Goroso, Alvaro Fraga, Michel Macedo, Carla Fernanda de Miranda Rodrigues, Bruno Mendes de Oliveira Silva, W. Watanabe, D. P. D. Silva, R. R. Silva, J. Puglisi, James Marcin, M. Dharmar","doi":"10.1002/widm.1411","DOIUrl":null,"url":null,"abstract":"A new predictive model to classify childhood obesity was implemented using machine learning techniques. The first step was to calculate the most relevant anthropomorphic and cardiovascular parameters of 187 children through principal component analysis (PCA) and cluster classification. Then Naïve‐Bayes method classified these children into six groups using anthropometric Z Score, measurements of abdominal obesity, and arterial pressure: Group I (20.32% of total): composed mainly by accentuated malnutrition and malnutrition children; Group II (36.36%): composed primarily by eutrophic children; Group III (21.4%): constituted by eutrophic plus overweight children; Group IV (14.97%): comprised mainly by overweight and obese children; Group V (5.34%): Obese and overweight children; and Group VI (1.6%): obese at risk children. From Group II to VI, the proportion of pre‐hypertensive and hypertensive children increased monotonically from 5 to 33%. This classification modes was tested on 66 children that were not originally included with a success rate of 97%. This predictive model will facilitate future longitudinal studies of obesity in children and will help plan interventions and evaluations of their results.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"07 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1411","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A new predictive model to classify childhood obesity was implemented using machine learning techniques. The first step was to calculate the most relevant anthropomorphic and cardiovascular parameters of 187 children through principal component analysis (PCA) and cluster classification. Then Naïve‐Bayes method classified these children into six groups using anthropometric Z Score, measurements of abdominal obesity, and arterial pressure: Group I (20.32% of total): composed mainly by accentuated malnutrition and malnutrition children; Group II (36.36%): composed primarily by eutrophic children; Group III (21.4%): constituted by eutrophic plus overweight children; Group IV (14.97%): comprised mainly by overweight and obese children; Group V (5.34%): Obese and overweight children; and Group VI (1.6%): obese at risk children. From Group II to VI, the proportion of pre‐hypertensive and hypertensive children increased monotonically from 5 to 33%. This classification modes was tested on 66 children that were not originally included with a success rate of 97%. This predictive model will facilitate future longitudinal studies of obesity in children and will help plan interventions and evaluations of their results.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.