M. Abroudi, Amir Ganji Fard, G. Dadashizadeh, Omid Gholami, D. Mahdian
{"title":"Antiproliferative Effects of Ferula assa-foetida’s Extract on PC12 and MCF7 Cancer Cells","authors":"M. Abroudi, Amir Ganji Fard, G. Dadashizadeh, Omid Gholami, D. Mahdian","doi":"10.11648/J.IJBECS.20200603.12","DOIUrl":null,"url":null,"abstract":"Background: Ferula assa-foetida is a herbaceous plant of the Umbelliferae family having a broad spectrum of biological activities such as antiseptic, antibacterial, anti-inflammation, and, anti-tumor activity against a wide range of cancers. Among these features, antitumor activity has become more important in recent years and it still demands more investigations to address the underlying mechanisms. Purpose: This current study was conducted to evaluate the anti-proliferative effect of Ferula assa-foetida on PC12 and MCF7 cells as well as examining its mechanisms. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. Cells incubated with different concentrations of the ethanolic extract of Ferula assa-foetida. Notably, cytotoxicity and apoptosis assay were measured by MTT and PI staining, respectively. Results: The MTT results showed that the ethanolic extract of Ferula assa-foetida in concentrations of 10, 7, 5, and 2.5 μM on both PC12 and MCF7 cells had a significant effect in cell viability and apoptosis induction in comparison to control group. Conclusion: In this study, it was determined that Ferula assa-fetida through the induction of apoptosis prevented the growth of PC12 and MCF7 cells and made a reduction in cell viability with different concentrations in a time- and dose-dependent manner. However, more studies are needed to reveal the mechanisms of Ferula assa-foetida’s extract in apoptosis induction.","PeriodicalId":73426,"journal":{"name":"International journal of biomedical engineering and clinical science","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biomedical engineering and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJBECS.20200603.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Background: Ferula assa-foetida is a herbaceous plant of the Umbelliferae family having a broad spectrum of biological activities such as antiseptic, antibacterial, anti-inflammation, and, anti-tumor activity against a wide range of cancers. Among these features, antitumor activity has become more important in recent years and it still demands more investigations to address the underlying mechanisms. Purpose: This current study was conducted to evaluate the anti-proliferative effect of Ferula assa-foetida on PC12 and MCF7 cells as well as examining its mechanisms. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. Cells incubated with different concentrations of the ethanolic extract of Ferula assa-foetida. Notably, cytotoxicity and apoptosis assay were measured by MTT and PI staining, respectively. Results: The MTT results showed that the ethanolic extract of Ferula assa-foetida in concentrations of 10, 7, 5, and 2.5 μM on both PC12 and MCF7 cells had a significant effect in cell viability and apoptosis induction in comparison to control group. Conclusion: In this study, it was determined that Ferula assa-fetida through the induction of apoptosis prevented the growth of PC12 and MCF7 cells and made a reduction in cell viability with different concentrations in a time- and dose-dependent manner. However, more studies are needed to reveal the mechanisms of Ferula assa-foetida’s extract in apoptosis induction.