Dan Zhang, Xiaoyu Ma, Michael Thomson, Derek Chiou
{"title":"Minnow","authors":"Dan Zhang, Xiaoyu Ma, Michael Thomson, Derek Chiou","doi":"10.1145/3296957.3173197","DOIUrl":null,"url":null,"abstract":"The importance of irregular applications such as graph analytics is rapidly growing with the rise of Big Data. However, parallel graph workloads tend to perform poorly on general-purpose chip multiprocessors (CMPs) due to poor cache locality, low compute intensity, frequent synchronization, uneven task sizes, and dynamic task generation. At high thread counts, execution time is dominated by worklist synchronization overhead and cache misses. Researchers have proposed hardware worklist accelerators to address scheduling costs, but these proposals often harden a specific scheduling policy and do not address high cache miss rates. We address this with Minnow, a technique that augments each core in a CMP with a lightweight Minnow accelerator. Minnow engines offload worklist scheduling from worker threads to improve scalability. The engines also perform worklist-directed prefetching, a technique that exploits knowledge of upcoming tasks to issue nearly perfectly accurate and timely prefetch operations. On a simulated 64-core CMP running a parallel graph benchmark suite, Minnow improves scalability and reduces L2 cache misses from 29 to 1.2 MPKI on average, resulting in 6.01x average speedup over an optimized software baseline for only 1% area overhead.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296957.3173197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
The importance of irregular applications such as graph analytics is rapidly growing with the rise of Big Data. However, parallel graph workloads tend to perform poorly on general-purpose chip multiprocessors (CMPs) due to poor cache locality, low compute intensity, frequent synchronization, uneven task sizes, and dynamic task generation. At high thread counts, execution time is dominated by worklist synchronization overhead and cache misses. Researchers have proposed hardware worklist accelerators to address scheduling costs, but these proposals often harden a specific scheduling policy and do not address high cache miss rates. We address this with Minnow, a technique that augments each core in a CMP with a lightweight Minnow accelerator. Minnow engines offload worklist scheduling from worker threads to improve scalability. The engines also perform worklist-directed prefetching, a technique that exploits knowledge of upcoming tasks to issue nearly perfectly accurate and timely prefetch operations. On a simulated 64-core CMP running a parallel graph benchmark suite, Minnow improves scalability and reduces L2 cache misses from 29 to 1.2 MPKI on average, resulting in 6.01x average speedup over an optimized software baseline for only 1% area overhead.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).