Unsupervised acoustic detection of fatigue-induced damage modes from wind turbine blades

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2023-07-12 DOI:10.1177/0309524x231187152
Jaclyn Solimine, M. Inalpolat
{"title":"Unsupervised acoustic detection of fatigue-induced damage modes from wind turbine blades","authors":"Jaclyn Solimine, M. Inalpolat","doi":"10.1177/0309524x231187152","DOIUrl":null,"url":null,"abstract":"This paper proposes a new in-situ damage detection approach for wind turbine blades, which leverages blade-internal non-stationary acoustic pressure fluctuations caused by the mechanical loading as the main source of excitation. This acoustic excitation was leveraged for the detection of fatigue-related damage modes on a full-scale wind turbine blade undergoing edgewise fatigue testing. An unsupervised, data-driven structural health monitoring strategy was developed to learn the normal cavity-internal acoustic sequences generated by the blade’s load cycles and to detect damage-related anomalies in the context of those sequences. A linear cepstral-coefficient based feature set was used to characterize the cavity-internal acoustics and LSTM-autoencoders were trained to accurately reconstruct healthy-case sequences. The reconstruction error was then used to characterize anomalous acoustic patterns within the blade cavity. The technique was able to detect a damage event earlier than a strain-based system by 120,000 load cycles.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"45 2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231187152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new in-situ damage detection approach for wind turbine blades, which leverages blade-internal non-stationary acoustic pressure fluctuations caused by the mechanical loading as the main source of excitation. This acoustic excitation was leveraged for the detection of fatigue-related damage modes on a full-scale wind turbine blade undergoing edgewise fatigue testing. An unsupervised, data-driven structural health monitoring strategy was developed to learn the normal cavity-internal acoustic sequences generated by the blade’s load cycles and to detect damage-related anomalies in the context of those sequences. A linear cepstral-coefficient based feature set was used to characterize the cavity-internal acoustics and LSTM-autoencoders were trained to accurately reconstruct healthy-case sequences. The reconstruction error was then used to characterize anomalous acoustic patterns within the blade cavity. The technique was able to detect a damage event earlier than a strain-based system by 120,000 load cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风力涡轮机叶片疲劳损伤模式的无监督声学检测
本文提出了一种新的风力机叶片原位损伤检测方法,该方法利用机械载荷引起的叶片内部非平稳声压波动作为主要激励源。利用这种声激励来检测全尺寸风力涡轮机叶片的疲劳相关损伤模式,并进行边缘疲劳测试。研究人员开发了一种无监督、数据驱动的结构健康监测策略,以了解叶片载荷循环产生的正常腔内声学序列,并在这些序列的背景下检测与损伤相关的异常情况。基于倒谱系数的线性特征集用于表征腔内声学,并训练lstm自编码器以准确重建健康情况序列。然后利用重建误差来表征叶片腔内的异常声学模式。与基于应变的系统相比,该技术能够在12万次载荷循环中更早地检测到损坏事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Extended state observer-based primary load frequency controller for power systems with ultra-high wind-energy penetration Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study Design and realization of a pre-production platform for wind turbine manufacturing Analysis of wind power curve modeling using multi-model regression On the aerodynamics of dual-stage co-axial vertical-axis wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1