{"title":"Generalized Multi-Scale Stochastic Reservoir Opportunity Index for enhanced well placement optimization under uncertainty in green and brownfields","authors":"F. Vaseghi, M. Ahmadi, M. Sharifi, M. Vanhoucke","doi":"10.2516/OGST/2021014","DOIUrl":null,"url":null,"abstract":"Well placement planning is one of the challenging issues in any field development plan. Reservoir engineers always confront the problem that which point of the field should be drilled to achieve the highest recovery factor and/or maximum sweep efficiency. In this paper, we use Reservoir Opportunity Index (ROI) as a spatial measure of productivity potential for greenfields, which hybridizes the reservoir static properties, and for brownfields, ROI is replaced by Dynamic Measure (DM), which takes into account the current dynamic properties in addition to static properties. The purpose of using these criteria is to diminish the search region of optimization algorithms and as a consequence, reduce the computational time and cost of optimization, which are the main challenges in well placement optimization problems. However, considering the significant subsurface uncertainty, a probabilistic definition of ROI (SROI) or DM (SDM) is needed, since there exists an infinite number of possible distribution maps of static and/or dynamic properties. To build SROI or SDM maps, the k-means clustering technique is used to extract a limited number of characteristic realizations that can reasonably span the uncertainties. In addition, to determine the optimum number of clustered realizations, Higher-Order Singular Value Decomposition (HOSVD) method is applied which can also compress the data for large models in a lower-dimensional space. Additionally, we introduce the multiscale spatial density of ROI or DM (D2ROI and D2DM), which can distinguish between regions of high SROI (or SDM) in arbitrary neighborhood windows from the local SROI (or SDM) maxima with low values in the vicinity. Generally, we develop and implement a new systematic approach for well placement optimization for both green and brownfields on a synthetic reservoir model. This approach relies on the utilization of multi-scale maps of SROI and SDM to improve the initial guess for optimization algorithm. Narrowing down the search region for optimization algorithm can substantially speed up the convergence and hence the computational cost would be reduced by a factor of 4.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2021014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6
Abstract
Well placement planning is one of the challenging issues in any field development plan. Reservoir engineers always confront the problem that which point of the field should be drilled to achieve the highest recovery factor and/or maximum sweep efficiency. In this paper, we use Reservoir Opportunity Index (ROI) as a spatial measure of productivity potential for greenfields, which hybridizes the reservoir static properties, and for brownfields, ROI is replaced by Dynamic Measure (DM), which takes into account the current dynamic properties in addition to static properties. The purpose of using these criteria is to diminish the search region of optimization algorithms and as a consequence, reduce the computational time and cost of optimization, which are the main challenges in well placement optimization problems. However, considering the significant subsurface uncertainty, a probabilistic definition of ROI (SROI) or DM (SDM) is needed, since there exists an infinite number of possible distribution maps of static and/or dynamic properties. To build SROI or SDM maps, the k-means clustering technique is used to extract a limited number of characteristic realizations that can reasonably span the uncertainties. In addition, to determine the optimum number of clustered realizations, Higher-Order Singular Value Decomposition (HOSVD) method is applied which can also compress the data for large models in a lower-dimensional space. Additionally, we introduce the multiscale spatial density of ROI or DM (D2ROI and D2DM), which can distinguish between regions of high SROI (or SDM) in arbitrary neighborhood windows from the local SROI (or SDM) maxima with low values in the vicinity. Generally, we develop and implement a new systematic approach for well placement optimization for both green and brownfields on a synthetic reservoir model. This approach relies on the utilization of multi-scale maps of SROI and SDM to improve the initial guess for optimization algorithm. Narrowing down the search region for optimization algorithm can substantially speed up the convergence and hence the computational cost would be reduced by a factor of 4.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.