{"title":"Improving drug safety predictions by reducing poor analytical practices","authors":"S. Lazic, Dominic P. Williams","doi":"10.1101/2020.09.25.314138","DOIUrl":null,"url":null,"abstract":"Predicting the safety of a drug from preclinical data is a major challenge in drug discovery, and progressing an unsafe compound into the clinic puts patients at risk and wastes resources. In drug safety pharmacology and related fields, methods and analytical decisions known to provide poor predictions are common and include creating arbitrary thresholds, binning continuous values, giving all assays equal weight, and multiple reuse of information. In addition, the metrics used to evaluate models often omit important criteria and models’ performance on new data are often not assessed rigorously. Prediction models with these problems are unlikely to perform well, and published models suffer from many of these issues. We describe these problems in detail, demonstrate their negative consequences, and propose simple solutions that are standard in other disciplines where predictive modelling is used.","PeriodicalId":23155,"journal":{"name":"Toxicology Research and Application","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.09.25.314138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Predicting the safety of a drug from preclinical data is a major challenge in drug discovery, and progressing an unsafe compound into the clinic puts patients at risk and wastes resources. In drug safety pharmacology and related fields, methods and analytical decisions known to provide poor predictions are common and include creating arbitrary thresholds, binning continuous values, giving all assays equal weight, and multiple reuse of information. In addition, the metrics used to evaluate models often omit important criteria and models’ performance on new data are often not assessed rigorously. Prediction models with these problems are unlikely to perform well, and published models suffer from many of these issues. We describe these problems in detail, demonstrate their negative consequences, and propose simple solutions that are standard in other disciplines where predictive modelling is used.