{"title":"Spin Hall effect generated by fluctuating vortices in type-II superconductors","authors":"Takuya Taira, Y. Kato, M. Ichioka, H. Adachi","doi":"10.1103/PHYSREVB.103.134417","DOIUrl":null,"url":null,"abstract":"We theoretically investigate the vortex spin Hall effect, i.e., a novel spin Hall effect driven by the motion of superconducting vortices, by focusing on the role of superconducting fluctuations. Within the BCS-Gor'kov microscopic approach combined with the Kubo formula, we find a strong similarity between the vortex spin Hall effect and the vortex Nernst/Ettingshausen effect. Calculated temperature dependence of the voltage signal due to the inverse vortex spin Hall effect exhibits a strong enhancement by vortex fluctuations. This result not only provides a possible explanation for a prominent peak found in the spin Seebeck effect in a NbN/Y$_3$Fe$_5$O$_{12}$ system, but also leads to a proposal of new experiments using other superconductors with strong fluctuations, such as cuprate or iron-based superconductors.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.134417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We theoretically investigate the vortex spin Hall effect, i.e., a novel spin Hall effect driven by the motion of superconducting vortices, by focusing on the role of superconducting fluctuations. Within the BCS-Gor'kov microscopic approach combined with the Kubo formula, we find a strong similarity between the vortex spin Hall effect and the vortex Nernst/Ettingshausen effect. Calculated temperature dependence of the voltage signal due to the inverse vortex spin Hall effect exhibits a strong enhancement by vortex fluctuations. This result not only provides a possible explanation for a prominent peak found in the spin Seebeck effect in a NbN/Y$_3$Fe$_5$O$_{12}$ system, but also leads to a proposal of new experiments using other superconductors with strong fluctuations, such as cuprate or iron-based superconductors.