I. Chernyavskiy, A. Vlasov, T. Antonsen, S. Cooke, D. Abe, B. Levush, K. Nguyen
{"title":"Single and multiple beam klystron modeling with TESLA","authors":"I. Chernyavskiy, A. Vlasov, T. Antonsen, S. Cooke, D. Abe, B. Levush, K. Nguyen","doi":"10.1109/PLASMA.2008.4591135","DOIUrl":null,"url":null,"abstract":"Summary form only given. TESLA (telegraphist's equations solution for linear-beam amplifiers) is a large-signal 2.5 D code successfully applied to the modeling of single beam and multiple beam klystron amplifiers. The current implementation of TESLA is based on the Fortran-95 language with a wide use of dynamically allocated memory. Advanced performance of the code together with highly efficient use of computer memory, user- friendly Python-based GUI and set of post-processing tools makes the TESLA package very useful as a primary design tool. Recent improvement in the TESLA model allows to accurately model the effects of slow and reflected particles, whose contribution becomes especially important for the simulation of high-efficiency devices. In addition, the extension of the code to a parallel version enables us to model beams in separate parallel processes. This allows more accurate simulation of multiple beam klystrons, having a large spread in the values of R/Q for the different beam- tunnels of the resonant cavities. The results of TESLA modeling of several devices and comparison with available experimental data are discussed.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 35th International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2008.4591135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary form only given. TESLA (telegraphist's equations solution for linear-beam amplifiers) is a large-signal 2.5 D code successfully applied to the modeling of single beam and multiple beam klystron amplifiers. The current implementation of TESLA is based on the Fortran-95 language with a wide use of dynamically allocated memory. Advanced performance of the code together with highly efficient use of computer memory, user- friendly Python-based GUI and set of post-processing tools makes the TESLA package very useful as a primary design tool. Recent improvement in the TESLA model allows to accurately model the effects of slow and reflected particles, whose contribution becomes especially important for the simulation of high-efficiency devices. In addition, the extension of the code to a parallel version enables us to model beams in separate parallel processes. This allows more accurate simulation of multiple beam klystrons, having a large spread in the values of R/Q for the different beam- tunnels of the resonant cavities. The results of TESLA modeling of several devices and comparison with available experimental data are discussed.