Evaluation and comparison of control and heat treated L-shape furniture joints produced from Scotch pine and ash wood under static bending and cyclic fatigue bending loadings
{"title":"Evaluation and comparison of control and heat treated L-shape furniture joints produced from Scotch pine and ash wood under static bending and cyclic fatigue bending loadings","authors":"Samet Demirel, Ruveyda Sen Er","doi":"10.4067/s0718-221x2022000100420","DOIUrl":null,"url":null,"abstract":"This study investigated how the mechanical properties of L-shape joints produced from heat treated Scotch pine or ash wood behaved under cyclic fatigue loading and compared this with the mechanical properties of non-heat treated wood materials. Additionally, static bending performances of the L-shape of joints were investigated and compared to fatigue bending performance of same type of joints. Results indicated that increasing number of staple from 6 to 8 and density generally increased static bending of L-shape joints. Static bending resistance of L-shape joints produced from control Ash wood significantly higher than those of L-shape joints produced from heat treated Ash wood while no significant difference were observed between static bending resistance L-shape joints produced from control Scotch pine and L-shape joints produced from heat treated Scotch pine wood. The fatigue bending resistances of L-shape joints produced from heat treated samples generally passed and failed the same loading steps with those produced from control samples which means both L-shape joints could be used in same service area. L-shape joints under static and fatigue loadings mostly indicated staple leg shear mode. The one under fatigue loading was more than the one under static loading. Additionally, some joints under fatigue loading indicated staple rupture. The overall ratio of static bending loading to cyclic fatigue bending loading for L-shape joints was obtained as 2.85.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2022000100420","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 2
Abstract
This study investigated how the mechanical properties of L-shape joints produced from heat treated Scotch pine or ash wood behaved under cyclic fatigue loading and compared this with the mechanical properties of non-heat treated wood materials. Additionally, static bending performances of the L-shape of joints were investigated and compared to fatigue bending performance of same type of joints. Results indicated that increasing number of staple from 6 to 8 and density generally increased static bending of L-shape joints. Static bending resistance of L-shape joints produced from control Ash wood significantly higher than those of L-shape joints produced from heat treated Ash wood while no significant difference were observed between static bending resistance L-shape joints produced from control Scotch pine and L-shape joints produced from heat treated Scotch pine wood. The fatigue bending resistances of L-shape joints produced from heat treated samples generally passed and failed the same loading steps with those produced from control samples which means both L-shape joints could be used in same service area. L-shape joints under static and fatigue loadings mostly indicated staple leg shear mode. The one under fatigue loading was more than the one under static loading. Additionally, some joints under fatigue loading indicated staple rupture. The overall ratio of static bending loading to cyclic fatigue bending loading for L-shape joints was obtained as 2.85.
期刊介绍:
Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.