Separation harmonics for detecting broken bar fault in case of load torque oscillation

T. Goktas, M. Arkan, M. Zafarani, B. Akin
{"title":"Separation harmonics for detecting broken bar fault in case of load torque oscillation","authors":"T. Goktas, M. Arkan, M. Zafarani, B. Akin","doi":"10.1109/IEMDC.2015.7409253","DOIUrl":null,"url":null,"abstract":"This paper presents separation harmonics to discriminate rotor failure from low frequency load torque oscillations in three phase induction motors. The most common method for detecting broken rotor bar faults is to analyze the corresponding sidebands through motor current signature analysis (MCSA). If a motor is subjected to load fluctuation, then the oscillation related sidebands exhibit similar behaviors as well. Particularly, when the load fluctuation frequency is close or equal to that of broken bars, the stator current spectrum analysis can be misleading. In this study, torque and motor phase voltage waveforms are exhaustively analyzed to discriminate broken rotor bar fault from low frequency load torque oscillation in three phase induction motors. In order to extract and justify the separation patterns, 2-D Time Stepping Finite Element Method (TSFEM) is used. The simulation and experimental results show that the proposed approach can successfully be applied to fault separation process in star connected motors.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"140 1","pages":"1452-1458"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents separation harmonics to discriminate rotor failure from low frequency load torque oscillations in three phase induction motors. The most common method for detecting broken rotor bar faults is to analyze the corresponding sidebands through motor current signature analysis (MCSA). If a motor is subjected to load fluctuation, then the oscillation related sidebands exhibit similar behaviors as well. Particularly, when the load fluctuation frequency is close or equal to that of broken bars, the stator current spectrum analysis can be misleading. In this study, torque and motor phase voltage waveforms are exhaustively analyzed to discriminate broken rotor bar fault from low frequency load torque oscillation in three phase induction motors. In order to extract and justify the separation patterns, 2-D Time Stepping Finite Element Method (TSFEM) is used. The simulation and experimental results show that the proposed approach can successfully be applied to fault separation process in star connected motors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分离谐波用于检测负载转矩振荡情况下的断条故障
本文提出了三相异步电动机转子故障与低频负载转矩振荡的分离谐波。检测转子断条故障最常用的方法是通过电机电流特征分析(MCSA)分析相应的边带。如果电机受到负载波动,那么振荡相关的侧带也表现出类似的行为。特别是当负载波动频率接近或等于断棒时,定子电流谱分析可能会产生误导。本文对三相异步电动机的转矩和相电压波形进行了详尽的分析,以区分转子断条故障和低频负载转矩振荡。为了提取和验证分离模式,采用二维时间步进有限元法(TSFEM)。仿真和实验结果表明,该方法可以成功地应用于星型连接电机的故障分离过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Free vibration analysis of a large hydroelectric generator and computation of radial electromagnetic exciting forces Multi-objective optimization of an actively shielded superconducting field winding: Pole count study Brushless doubly-fed induction machines: Torque ripple A dynamic pole-phase modulation induction machine model Tri-port converter for flexible energy control of PV-fed electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1