{"title":"Standardization of an efficient protocol for transformation in Indian cauliflower (Brassica oleracea) var. botrytis ","authors":"Shalini Rawat, P. Kalia, N. Goel","doi":"10.31830/2454-1761.2022.cr-11088","DOIUrl":null,"url":null,"abstract":"Cauliflower is an important Cole crop grown all over the world for its nutritional benefits. But it is encountered by a serious problem caused by the insect- pest attack. Plutella xylostella is one such insect which causes huge losses. An efficient and simple method for genetic transformation and regeneration of Indian cauliflower, Brassica oleracea var. botrytis has to be developed. Hence, optimization of the plant transformation is a pre- requisite for successful transformation process. Therefore, we worked on this objective at the Indian Agricultural Research Institute, New Delhi, India, and optimized the Agrobacterium-mediated transformation protocol in Indian cauliflower, Pusa Snowball K1 and Pusa Snowball KT25 varieties for developing insect resistance against Plutella xylostella using Bt genes. The Agrobacterium tumefaciens mediated transformation process was utilized for carrying out the transformation and the explant was obtained from the seedlings germinated from the seeds of the respective variety and used for genetic transformation process. The transgene integration and expression were later confirmed by PCR and RT-qPCR, respectively. Moreover, insect bioassay showed that transgenic plants effectively controlled the Diamond Back moth infestation concerning to the control plants indicating the presence of resistance developed against the insect. Hence, this protocol efficiently regenerated transgenic plants that lead to the resistance against biotic stress, specific to the insect Diamond back moth.\n","PeriodicalId":10786,"journal":{"name":"Crop research","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop research","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.31830/2454-1761.2022.cr-11088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cauliflower is an important Cole crop grown all over the world for its nutritional benefits. But it is encountered by a serious problem caused by the insect- pest attack. Plutella xylostella is one such insect which causes huge losses. An efficient and simple method for genetic transformation and regeneration of Indian cauliflower, Brassica oleracea var. botrytis has to be developed. Hence, optimization of the plant transformation is a pre- requisite for successful transformation process. Therefore, we worked on this objective at the Indian Agricultural Research Institute, New Delhi, India, and optimized the Agrobacterium-mediated transformation protocol in Indian cauliflower, Pusa Snowball K1 and Pusa Snowball KT25 varieties for developing insect resistance against Plutella xylostella using Bt genes. The Agrobacterium tumefaciens mediated transformation process was utilized for carrying out the transformation and the explant was obtained from the seedlings germinated from the seeds of the respective variety and used for genetic transformation process. The transgene integration and expression were later confirmed by PCR and RT-qPCR, respectively. Moreover, insect bioassay showed that transgenic plants effectively controlled the Diamond Back moth infestation concerning to the control plants indicating the presence of resistance developed against the insect. Hence, this protocol efficiently regenerated transgenic plants that lead to the resistance against biotic stress, specific to the insect Diamond back moth.