{"title":"Evaluating Deep Learning Techniques for Blind Image Super-Resolution within a High-Scale Multi-Domain Perspective","authors":"V. A. de Santiago Júnior","doi":"10.3390/ai4030032","DOIUrl":null,"url":null,"abstract":"Despite several solutions and experiments have been conducted recently addressing image super-resolution (SR), boosted by deep learning (DL), they do not usually design evaluations with high scaling factors. Moreover, the datasets are generally benchmarks which do not truly encompass significant diversity of domains to proper evaluate the techniques. It is also interesting to remark that blind SR is attractive for real-world scenarios since it is based on the idea that the degradation process is unknown, and, hence, techniques in this context rely basically on low-resolution (LR) images. In this article, we present a high-scale (8×) experiment which evaluates five recent DL techniques tailored for blind image SR: Adaptive Pseudo Augmentation (APA), Blind Image SR with Spatially Variant Degradations (BlindSR), Deep Alternating Network (DAN), FastGAN, and Mixture of Experts Super-Resolution (MoESR). We consider 14 datasets from five different broader domains (Aerial, Fauna, Flora, Medical, and Satellite), and another remark is that some of the DL approaches were designed for single-image SR but others not. Based on two no-reference metrics, NIQE and the transformer-based MANIQA score, MoESR can be regarded as the best solution although the perceptual quality of the created high-resolution (HR) images of all the techniques still needs to improve.","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"60 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/ai4030032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Despite several solutions and experiments have been conducted recently addressing image super-resolution (SR), boosted by deep learning (DL), they do not usually design evaluations with high scaling factors. Moreover, the datasets are generally benchmarks which do not truly encompass significant diversity of domains to proper evaluate the techniques. It is also interesting to remark that blind SR is attractive for real-world scenarios since it is based on the idea that the degradation process is unknown, and, hence, techniques in this context rely basically on low-resolution (LR) images. In this article, we present a high-scale (8×) experiment which evaluates five recent DL techniques tailored for blind image SR: Adaptive Pseudo Augmentation (APA), Blind Image SR with Spatially Variant Degradations (BlindSR), Deep Alternating Network (DAN), FastGAN, and Mixture of Experts Super-Resolution (MoESR). We consider 14 datasets from five different broader domains (Aerial, Fauna, Flora, Medical, and Satellite), and another remark is that some of the DL approaches were designed for single-image SR but others not. Based on two no-reference metrics, NIQE and the transformer-based MANIQA score, MoESR can be regarded as the best solution although the perceptual quality of the created high-resolution (HR) images of all the techniques still needs to improve.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.