{"title":"Review on Testosterone Delivery by Natural and Synthetic Nanoparticles","authors":"P. Chanphai, G. Bérubé, H. Riahi","doi":"10.15406/jnmr.2017.05.00111","DOIUrl":null,"url":null,"abstract":"The loading efficacies of testosterone with polyamidoamine PAMAN-G3 and PAMAM-G4 and chitosan-15 and chitosan-100 kDa nanoparticles were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the testosterone binding process to polymer nanoparticles. Structural analysis showed testosterone-polymer bindings occur via hydrophobic, H-bonding contacts. The binding affinity is testosterone-chitosan > testosterone-PAMAM. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the diameter of the polymer aggregates as steroid loading occurred. Chitosan nanoparticles are more effective carriers than PAMAM dendrimers.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomedicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/jnmr.2017.05.00111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The loading efficacies of testosterone with polyamidoamine PAMAN-G3 and PAMAM-G4 and chitosan-15 and chitosan-100 kDa nanoparticles were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the testosterone binding process to polymer nanoparticles. Structural analysis showed testosterone-polymer bindings occur via hydrophobic, H-bonding contacts. The binding affinity is testosterone-chitosan > testosterone-PAMAM. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the diameter of the polymer aggregates as steroid loading occurred. Chitosan nanoparticles are more effective carriers than PAMAM dendrimers.