Fabrication, Characterization and Permeation Studies of Ionically Cross-linked Chitosan/Kaolin Composite Membranes

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL Periodica Polytechnica Chemical Engineering Pub Date : 2023-03-09 DOI:10.3311/ppch.21253
S. B. Rekik, S. Gassara, J. Bouaziz, S. Baklouti, A. Deratani
{"title":"Fabrication, Characterization and Permeation Studies of Ionically Cross-linked Chitosan/Kaolin Composite Membranes","authors":"S. B. Rekik, S. Gassara, J. Bouaziz, S. Baklouti, A. Deratani","doi":"10.3311/ppch.21253","DOIUrl":null,"url":null,"abstract":"This paper presents the successful preparation of porous membranes based on chitosan with enhanced mechanical, thermal and chemical properties applicable in water treatment field. Herein, chitosan/kaolin composite membranes with a cross-linking agent and a porogen were prepared using the solvent casting method. The characterization of the as-fabricated membranes indicated that the combined effect of kaolin as reinforcing agent, polyethylene glycol as pore former and citric acid as cross-linker in a chitosan matrix showed a significant influence on the membrane properties. The results indicated that the incorporation of a hydrophilic porogenic reagent into the collodion in addition to providing a porous morphology makes it possible to obtain a more hydrophilic membrane, and thus induces an increase in the pure water permeability. The cross-linked membranes exhibited an improved water resistance, better thermal and mechanical properties as compared to neat chitosan films. The cross-linked membranes had a mean pore size of 50 nm falling in the range of ultrafiltration. Their functional properties were determined in terms of pure water filtration and molecular weight cut-off tests.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.21253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the successful preparation of porous membranes based on chitosan with enhanced mechanical, thermal and chemical properties applicable in water treatment field. Herein, chitosan/kaolin composite membranes with a cross-linking agent and a porogen were prepared using the solvent casting method. The characterization of the as-fabricated membranes indicated that the combined effect of kaolin as reinforcing agent, polyethylene glycol as pore former and citric acid as cross-linker in a chitosan matrix showed a significant influence on the membrane properties. The results indicated that the incorporation of a hydrophilic porogenic reagent into the collodion in addition to providing a porous morphology makes it possible to obtain a more hydrophilic membrane, and thus induces an increase in the pure water permeability. The cross-linked membranes exhibited an improved water resistance, better thermal and mechanical properties as compared to neat chitosan films. The cross-linked membranes had a mean pore size of 50 nm falling in the range of ultrafiltration. Their functional properties were determined in terms of pure water filtration and molecular weight cut-off tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子交联壳聚糖/高岭土复合膜的制备、表征及渗透研究
本文介绍了壳聚糖多孔膜的成功制备,它具有较好的力学、热、化学性能,可应用于水处理领域。采用溶剂浇铸法制备了带有交联剂和多孔剂的壳聚糖/高岭土复合膜。制备的膜的表征表明,在壳聚糖基体中,高岭土作为补强剂,聚乙二醇作为成孔剂,柠檬酸作为交联剂的复合作用对膜的性能有显著影响。结果表明,在胶体中掺入亲水致孔剂除了提供多孔形态外,还可以获得更亲水的膜,从而诱导纯水渗透性的增加。与纯壳聚糖膜相比,交联膜具有更好的耐水性、热性能和力学性能。交联膜的平均孔径为50 nm,在超滤范围内。通过纯水过滤和分子量切断试验确定了它们的功能特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
期刊最新文献
The Nanostructure Based SnS Chalcogenide Semiconductor: A Detailed Investigation of Physical and Electrical Properties Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D Metal Oxide-based Nanoparticles for Environmental Remediation: Drawbacks and Opportunities Effect of Nanophotocatalyst WO3 Addition on PVDF Membrane Characteristics and Performance Mathematical-model Analysis of the Potential Exposure to Lead, Zinc and Iron Emissions from Consumption of Premium Motor Spirit in Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1