Assessment of moisture content in power transformer based on traditional techniques and Adaptive neuro-fuzzy interference system

P. Sekatane, J. Jordaan, P. Bokoro
{"title":"Assessment of moisture content in power transformer based on traditional techniques and Adaptive neuro-fuzzy interference system","authors":"P. Sekatane, J. Jordaan, P. Bokoro","doi":"10.23919/ELECO47770.2019.8990505","DOIUrl":null,"url":null,"abstract":"The use of traditional measurement techniques for condition monitoring of power transformer is still a common practice in the power industry. These techniques have proven to be unreliable as a result of sampling and analysis errors. Given the unequal moisture distribution between cellulose and mineral oil in power transformers, the dryness correlation between the two liquid insulators is not always accurate. The aim of this work is to advice the manufacturer of power transformers to continue use the Dew point measurement or move to the modern methods, like frequency domain spectroscopy (FDS). Dew point measurements have been used to estimate the dryness of power transformers, model the data by adaptive neuro-fuzzy inference system (ANFIS) as is proven to solve complex data and validate the results by Frequency Domain spectroscopy (FDS).","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"5 1","pages":"987-991"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of traditional measurement techniques for condition monitoring of power transformer is still a common practice in the power industry. These techniques have proven to be unreliable as a result of sampling and analysis errors. Given the unequal moisture distribution between cellulose and mineral oil in power transformers, the dryness correlation between the two liquid insulators is not always accurate. The aim of this work is to advice the manufacturer of power transformers to continue use the Dew point measurement or move to the modern methods, like frequency domain spectroscopy (FDS). Dew point measurements have been used to estimate the dryness of power transformers, model the data by adaptive neuro-fuzzy inference system (ANFIS) as is proven to solve complex data and validate the results by Frequency Domain spectroscopy (FDS).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于传统方法和自适应神经模糊干扰系统的电力变压器含水率评估
在电力工业中,使用传统的测量技术对电力变压器进行状态监测仍然是一种普遍的做法。由于采样和分析错误,这些技术已被证明是不可靠的。由于电力变压器中纤维素和矿物油的水分分布不均匀,两种液体绝缘子的干度相关性并不总是准确的。这项工作的目的是建议电力变压器制造商继续使用露点测量或转向现代方法,如频域光谱(FDS)。露点测量被用来估计电力变压器的干度,用自适应神经模糊推理系统(ANFIS)对数据建模,并被证明可以解决复杂的数据,用频域谱(FDS)验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm Performance Analysis of Fault Current Limiting Methods on IEEE 9-Bus System Comparison of Magnetic Particle Incorporated PDMS Membrane Actuators Gene Selection using Intelligent Dynamic Genetic Algorithm and Random Forest RFID Based Indoors Test Setup for Visually Impaired
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1